MHB Finding the Formula for Partial Sums of an Arithmetic Sequence

Click For Summary
The discussion focuses on deriving the formula for the partial sums \( S_n \) of an arithmetic sequence. The established formula is \( S_n = \frac{n}{2}(2a_1 + (n-1)d) \), where \( a_1 \) is the first term and \( d \) is the common difference. Various approaches are suggested, including geometric and algebraic arguments, as well as recursive methods. The conversation emphasizes the importance of understanding the relationship between the terms in the sequence and how to express the sum effectively. Ultimately, the derived formula captures the essence of the arithmetic sequence's partial sums.
Dustinsfl
Messages
2,217
Reaction score
5
Use a geometric or algebraic argument to find a formula for the partial sums $A_n$ of an arithmetic sequence.

I know that the partial sum is $S_n = n/2(2a_1+(n-1)d)$ where d is the difference.

$A_n = \sum\limits_{k = 1}^n a_k$

I can come up with $n/2(a_1+a_n)$ but how do I get the difference?
 
Physics news on Phys.org
Hello, dwsmith!

Use a geometric or algebraic argument to find a formula for the partial sum $S_n$ of an arithmetic sequence.

I know that the partial sum is: $S_n = \frac{n}{2}(2a_1+(n-1)d)$ where d is the difference.

$A_n = \sum\limits_{k = 1}^n a_k$

I can come up with $\frac{n}{2}(a_1+a_n)$ but how do I get the difference?
Why do you want $d$ ? .You don't know $a_1$ either.

Did you read the question?
They ask us to derive the partial sum formula.We have: .\begin{Bmatrix}a_1 &=& a_1 \\ a_2 &=& a_1 + d \\ a_3 &=& a + 2d \\ a_4 &=& a+3d \\ \vdots && \vdots \\ a_n &=& a + (n\!-\!1)d \end{Bmatrix}

Add: .\underbrace{a_1 + a_2 + a_3 + \cdots + a_n}_{S_n} \;=\;\underbrace{a_1 + a_1 + \cdots + a_1}_{n\text{ terms}} + \big[1 + 2+ 3+\cdots + (n\!-\!1)\big]d

. . . . . . . S_n \;=\;n\!\cdot\!a_1 + \frac{n(n-1)}{2}d \;=\;\frac{2na_1 + n(n\!-\!1)d}{2}

. . . . . . . [S_n \;=\;\frac{n}{2}\big[2a_1 + (n\!-\!1)d\big]
 
The nth term of an arithmetic sequence is:

$\displaystyle a_n=a_1+(n-1)d$

We could derive the partial sum by expressing the sum recursively:

$\displaystyle S_{n}=S_{n-1}+(n-1)d$

$\displaystyle S_{n+1}=S_{n}+nd$

Subtracting the former from the latter, we find:

$\displaystyle S_{n+1}=2S_{n}-S_{n-1}+d$

$\displaystyle S_{n+2}=2S_{n+1}-S_{n}+d$

Subtracting again, we find the homogeneous recursion:

$\displaystyle S_{n+2}=3S_{n+1}-3S_{n}+S_{n-1}$

The associated characteristic equation is:

$\displaystyle r^2-3r^2+3r-1=0$

$\displaystyle (r-1)^3=0$

Hence:

$\displaystyle S_n=k_1+k_2n+k_3n^2$

Using:

$\displaystyle S_1=k_1+k_2+k_3=a_1$

$\displaystyle S_2=k_1+2k_2+4k_3=2a_1+d$

$\displaystyle S_3=k_1+3k_2+9k_3=3a_1+3d$

we find:

$\displaystyle k_1=0,k_2=a_1-\frac{1}{2}d,k_3=\frac{1}{2}d$

And so:

$\displaystyle S_n=\left(a_1-\frac{1}{2}d \right)n+\left(\frac{1}{2}d \right)n^2$

$\displaystyle S_n=\frac{n}{2}\left(2a_1-d+nd\right)$

$\displaystyle S_n=\frac{n}{2}\left(2a_1+(n-1)d\right)$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K