MHB Finding the Frequency of 5 in $S$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Frequency
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $S=1+10+19+28+\cdots+10^{2013}$. How often does the digit 5 occur in $S$.
 
Mathematics news on Phys.org
anemone said:
Let $S=1+10+19+28+\cdots+10^{2013}$. How often does the digit 5 occur in $S$.

[sp]It is a series of arithmetic type ...

$\displaystyle S_{n} = \sum_{k=1}^{n} a_{k},\ a_{k} = a_{1} + d\ (k-1)\ (1)$

... where $d=9$, $a_{1}=1$ and...

$\displaystyle n= \frac{10^{m} - 1}{9} + 1\ (2)$

It is well known that...

$\displaystyle S_{n} = \frac{n}{2} (a_{1} + a_{n})\ (3)$

... and because $\frac{n}{2}$ is a number composed by m-2 digits 'five'and 1 digit 'sex' the numer of digit 'five' in $S_{n}$ is 2 (m-2). For m=2013 the number of digit 'five' is 2 (2013 - 2) = 4022...[/sp]

Kind regards

$\chi$ $\sigma$
 
chisigma said:
[sp]It is a series of arithmetic type ...

$\displaystyle S_{n} = \sum_{k=1}^{n} a_{k},\ a_{k} = a_{1} + d\ (k-1)\ (1)$

... where $d=9$, $a_{1}=1$ and...

$\displaystyle n= \frac{10^{m} - 1}{9} + 1\ (2)$

It is well known that...

$\displaystyle S_{n} = \frac{n}{2} (a_{1} + a_{n})\ (3)$

... and because $\frac{n}{2}$ is a number composed by m-2 digits 'five'and 1 digit 'sex' the numer of digit 'five' in $S_{n}$ is 2 (m-2). For m=2013 the number of digit 'five' is 2 (2013 - 2) = 4022...[/sp]

Kind regards

$\chi$ $\sigma$

Hi chisigma,:)

This is one very easy to follow and nevertheless VERY elegant solution to a pretty hard challenge! How many thumbs up can I give to this solution?!?(Yes)(Yes) :cool:

Your reply kind of reassuring me to keep posting many more challenge problems here because it seems to me our members will just continue to surprise us by their wonderful and insightful solution!

Thanks chisigma for this solution! And thanks for participating!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top