Finding the Intersection of Subspaces with Given Spanning Vectors

Click For Summary
To find the intersection of subspaces U and V spanned by vectors {X1, X2, X3} and {Y1, Y2, Y3}, one must determine the conditions under which a vector belongs to both subspaces. This involves understanding the definitions of membership in U and V, prompting a focus on equations. It is advisable to first eliminate any linearly dependent vectors from both sets to simplify the problem. Considering the geometric implications of the dimensions of the subspaces can provide insights into the potential dimensions of their intersection. Ultimately, identifying linearly independent vectors within the intersection will lead to a solution.
Tereno
Messages
8
Reaction score
0
How do you find the intersection of subspaces when the subspaces are given by the span of 3 vectors?

For example, U is spanned by { X1 , X2 , X3} and V is spanned by { Y1, Y2, Y3}.

Thanks in advance.
 
Physics news on Phys.org
I think you just do the obvious thing.

What does it mean for a vector to be an element of U?
What does it mean for a vector to be an element of V?

Then you simply ask when can both of them be true!


If you're not yet inclined to do so, allow me to remind you this is an algebra course, so you should try to be thinking about equations.
 
The first thing I would do would be to eliminate linearly dependent vectors in {X1,X2,X3} and {Y1,Y2,Y3} if possible.
Once you know the dimension, it may help to think geometrically: A vector space of dimension 1 is a line through the origin (thinking in R^3), a vector space of dimension 2 is a plane through the origin, and a vector space of dimension 3 is all of R^3. What is the intersection of two of these objects? This might give you a hint as to the dimension of the intersection. If you can find enough LI vectors in the intersection, you are done.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 5 ·
Replies
5
Views
7K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
4K