I Finding the inverse tangent of a complex number

AI Thread Summary
The discussion focuses on finding the arctangent of a complex number, expressed as w = arctan(z), where z = x + iy. A proposed formula involves logarithmic expressions, which the original poster wishes to avoid, seeking results in terms of trigonometric and hyperbolic functions instead. The conversation highlights the transformation of the problem into solving equations involving cosine and sine functions of complex arguments. By applying angle sum identities and recognizing hyperbolic relationships, the discussion derives equations relating the tangent and hyperbolic tangent of the angles. Ultimately, the goal is to express u and v as functions of x and y without relying on logarithmic forms.
bsaucer
Messages
29
Reaction score
0
TL;DR Summary
Inverse Tangent of complex number in rectangular form.
Let z=x+iy, and w=u+iv. I am looking for a formula to find the arctangent of z, or w=arctan(z). I want the results of u and v to be in terms of trigonometric and hyperbolic functions (and their inverses) and not in terms of logarithms. The values u and v should be functions of x and y.
 
Mathematics news on Phys.org
The formula
\tan^{-1}z=\frac{i}{2}\log\frac{i+z}{i-z}
seems useful to me but you do not like logarithm. 
 
Last edited:
If you can get as far as <br /> e^{2iz} = \frac{w + 1}{w - 1} then \begin{split}<br /> \cos 2z &amp;= \frac{w^2 + 1}{w^2 - 1} \\<br /> \sin 2z &amp;= \frac{2w}{w^2 - 1}\end{split} so the problem is reduced to solving <br /> \begin{split}\cos (2x + 2iy) &amp;= A \\ \sin (2x + 2iy) &amp;= B\end{split} for x and y. The left hand sides can be expanded using the angle sum formulae and the identities <br /> \cos 2iy = \cosh 2y, \qquad \sin 2iy = i\sinh 2y. By taking ratios of real and imaginary parts we end up with <br /> \begin{split}<br /> \tan 2x \tanh 2y &amp;= - \frac{ \operatorname{Im} A}{\operatorname{Re} A} \\<br /> \tan 2x \coth 2y &amp;= \frac{ \operatorname{Re} B}{\operatorname{Im} B}\end{split} whence <br /> \begin{split}<br /> \tan^2 2x = -\frac{ \operatorname{Im} A \operatorname{Re} B}{ \operatorname{Re} A \operatorname{Im} B} \\<br /> \tanh^2 2y = -\frac{ \operatorname{Im} A \operatorname{Im} B}{ \operatorname{Re} A \operatorname{Re} B}.\end{split}
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top