MHB Finding the Measure of Angle KPM Using Angle Bisector Theorem

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Angle Measure
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Ray $\overline{PK}$ bisects and the measure of $\angle{LPM}$ is $11x^o$ and the measure of $\angle{LPK}$ is $(4x+18)^o$
What is the measure of
$\angle{KPM}$
$s.\ 12^o \quad b.\ 28\dfrac{2}{7}^o \quad c. \ 42^o \quad d. \ 61\dfrac{1}{5}^o \quad e. \ 66^o$

43.png
 
Last edited:
Mathematics news on Phys.org
$\vec{PK}$ bisects $\angle LPM \implies m\angle LPK = m\angle KPM = \dfrac{1}{2} m\angle LPM$

$4x+18 = \dfrac{11x}{2}$
 
skeeter said:
$\vec{PK}$ bisects $\angle LPM \implies m\angle LPK = m\angle KPM = \dfrac{1}{2} m\angle LPM$

$4x+18 = \dfrac{11x}{2}$

so then
$\angle{LPK} = \angle{KPM} =4x + 18\quad\angle{LPM}=11x$
$\angle{LPK}+ \angle{KPM}= \angle{LPM}$
$4x+18+4x+18=11x$
$8x+36=11x\implies x=12$
$\angle{KPM}=4x+18\quad \therefore \angle{KPM} =4(12)+18=66$
e $66^o$

probably easier than this
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
5
Views
1K
Replies
1
Views
2K
Replies
46
Views
8K
Replies
7
Views
6K
Replies
23
Views
6K
Back
Top