Finding the Metric Tensor for a Flat 2D Plane with Rotated Coordinates

  • Context: MHB 
  • Thread starter Thread starter andrey21
  • Start date Start date
  • Tags Tags
    Flat Plane
Click For Summary

Discussion Overview

The discussion revolves around finding the metric tensor for a flat two-dimensional plane with rotated coordinates. Participants explore the relationship between the original coordinates (x, y) and the new coordinates (p, q), and how to derive the metric tensor from the differential elements of these coordinates.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • One participant expresses difficulty in finding the metric tensor and asks for guidance on their approach.
  • Another participant suggests using LaTeX for clarity and emphasizes the importance of writing down the entire question.
  • There is a discussion about the correct differentiation of coordinates, with one participant noting that the angle θ should remain fixed during differentiation.
  • Participants discuss the substitution of differential coefficients into the equation for \(ds^2\) and the application of the chain rule.
  • One participant presents their calculations for \(ds^2\) but is corrected by another for neglecting the differentials dp and dq.
  • A later reply clarifies that the metric tensor can be derived from the quadratic form associated with \(ds^2\), leading to a proposed matrix representation.
  • Another participant asks how to adjust the metric tensor when the q-axis is defined to pass through a specific point, leading to further calculations involving trigonometric relationships.
  • There is a confirmation from one participant that the derived metric tensor appears correct after adjustments.
  • The discussion continues with a new transformation of coordinates, prompting further exploration of the metric tensor in this context.

Areas of Agreement / Disagreement

Participants generally agree on the process of deriving the metric tensor, but there are multiple viewpoints on specific steps, particularly regarding the treatment of variables and the application of differentiation. The discussion remains unresolved in terms of finalizing the metric tensor for the new coordinate transformations.

Contextual Notes

Some participants express uncertainty about the correct application of differentiation and the implications of fixing certain variables, indicating that assumptions may not be fully articulated. The discussion also reflects varying levels of familiarity with the topic among participants.

andrey21
Messages
475
Reaction score
0
Hi guys, first time poster here. I have been struggling with the following problem for a few days now and could use some guidance. I believe I have the first part correct but the second is causing me trouble (see attachment). Is what I'm doing correct and how would I go about finding the metric tensor?

Thank You in advance for any help :)View attachment 292
 

Attachments

  • Revision 4.png
    Revision 4.png
    54.1 KB · Views: 145
Physics news on Phys.org
Re: Flat two dimensional Plane (please Help)

This is impossible to read. While I can read most of it after "zooming" to 400%, your answer is in a "drop down" window that does not, here, "drop down".
 
Re: Flat two dimensional Plane (please Help)

Hi Hallsoofivy, I'm sorry about the attachment, I wanted to upload it in two parts but there was insufficient space. As for the drop down window, there is now answer there. That is as far as I have gotten.

I'm not sure how to substitute the differential coefficients into that equation, can you give me some suggestions?

Also is the first part of the answer correct? Finding how the (x,y) coordinates relate to the (p,q) coordinates.
 
Re: Flat two dimensional Plane (please Help)

Hey AA23, welcome to the site. You would greatly help us helping you if you could write down the whole question using LaTeX and attach the graph only. These topics will help:

http://www.mathhelpboards.com/f26/mhb-latex-guide-pdf-1142/
http://www.mathhelpboards.com/f26/how-use-latex-site-27/

Cheers.
 
Re: Flat two dimensional Plane (please Help)

AA23 said:
Hi guys, first time poster here. I have been struggling with the following problem for a few days now and could use some guidance. I believe I have the first part correct but the second is causing me trouble (see attachment). Is what I'm doing correct and how would I go about finding the metric tensor?

Thank You in advance for any help :)View attachment 292
Parts (a)(i) and (a)(ii) look correct, but (a)(iii) is not. The angle $\theta$ is supposed to be fixed, so you should not differentiate with respect to it. The variables are changing from $(x,y)$ to $(p,q).$ So you should be looking for the differential coefficients $\frac{\partial x}{\partial p}$, $\frac{\partial x}{\partial q}$, $\frac{\partial y}{\partial p}$ and $\frac{\partial y}{\partial q}$, keeping $\theta$ fixed throughout.
 
Re: Flat two dimensional Plane (please Help)

Hi Opalg, having taken on board what you said and found the differential coefficients. What is the next step? Do I now substitute them into

\(ds^2 = dx^2 + dy^2\)

Thanks again :)
 
Last edited:
Re: Flat two dimensional Plane (please Help)

AA23 said:
Hi Opalg, having taken on board what you said and found the differential coefficients. What is the next step? Do I now substitute them into

\(ds^2 = dx^2 + dy^2\)
Use the chain rule in the form $dx = \frac{\partial x}{\partial p}dp + \frac{\partial x}{\partial q}dq$ (and a similar expression for $dy$) to write $dx^2 + dy^2$ in terms of $dp$ and $dq$.
 
So using:\(dx = \frac{\partial x}{\partial p}dp + \frac{\partial x}{\partial q}dq\)

Where:

\(\frac{\partial x}{\partial p}=1\)

\(\frac{\partial x}{\partial q}=cos\theta\)

\(\frac{\partial y}{\partial p}=0\)

\(\frac{\partial y}{\partial q} = sin\theta\)

Substituting into:

\(ds^2 = dx^2 + dy^2\)

Gives:\(ds^2 = (1+cos \theta)^2 + (0+sin\theta)^2\)

\(ds^2 = (1+cos \theta)^2 + (sin\theta)^2\)

Which would give:

\(ds^2 = 1 + 2 cos\theta + cos^2\theta + sin^2\theta \)

\(ds^2 = 2 + 2 cos\theta\)

Is this correct? Thank you in advance :)
 
You forgot about the $dp$ and $dq$.

AA23 said:
So using:

\(dx = \frac{\partial x}{\partial p}dp + \frac{\partial x}{\partial q}dq\)

Where:

\(\frac{\partial x}{\partial p}=1\)

\(\frac{\partial x}{\partial q}=\cos\theta\)

\(\frac{\partial y}{\partial p}=0\)

\(\frac{\partial y}{\partial q} = \sin\theta\)

Substituting into:

\(ds^2 = dx^2 + dy^2\)

Gives:

\(ds^2 = (\color{red}{dp}+\cos \theta \color{red}{dq})^2 + (0+\sin\theta \color{red}{dq})^2\)

Which would give:

\(ds^2 = \color{red}{dp^2} + 2 \cos\theta\color{red}{dpdq} + (\cos^2\theta + \sin^2\theta) \color{red}{dq^2} \)

\(ds^2 = \color{red}{dp^2} + 2 \cos\theta \color{red}{dpdq} \color{red}{+dq^2}\)
LaTeX tip: put a backslash before sin and cos to improve their appearance.
 
  • #10
(Rofl) I saw my mistake just as you replied.

Given that is the final answer, what part would I use for the metric tensor?

Thanks for the LaTex tip
 
  • #11
AA23 said:
Given that is the final answer, what part would I use for the metric tensor?
I am not very familiar with this topic, but as I understand it the metric tensor in this case should be the $2\times2$ matrix associated with the quadratic form for $ds^2$. In other words, $$ ds^2 = dp^2 + 2\cos\theta dpdq + dq^2 = \begin{bmatrix}dp & dq \end{bmatrix} \begin{bmatrix}1 & \cos\theta \\ \cos\theta & 1 \end{bmatrix} \begin{bmatrix}dp \\ dq \end{bmatrix}.$$

Thus the metric tensor should presumably be the matrix $ \begin{bmatrix}1 & \cos\theta \\ \cos\theta & 1 \end{bmatrix}.$
 
  • #12
Thank you Opalg, after establishing the metric tensor the question goes on to say:

Suppose the q axis goes through the point (5,12), what is the metric tensor now in the (p,q) system?

Using:

\(r^2 = x^2 + y^2\)

\(r^2 = (5)^2 + (12)^2\)

\(r^2 = 25 +144\)

\(r^2 = 169\)

\(r = 13\)

Substituting this values into:

\(\cos \theta = \frac{x}{r}\)

\(\cos \theta = \frac{5}{13}\)

Therefore the new metric tensor is:\begin{bmatrix}1 & \frac{5}{13}\\ \frac{5}{13}\ & 1 \end{bmatrix}.

Is this correct??
 
  • #13
AA23 said:
Therefore the new metric tensor is:\begin{bmatrix}1 & \frac{5}{13}\\ \frac{5}{13}\ & 1 \end{bmatrix}.

Is this correct??
Looks good to me. :)
 
  • #14
Thanks Opalg

The second part of the question asks to repeat the same process but for:

\(p=x\)

\(q = x \cos\theta + y \sin\theta\)

Therefore:

\(x=p\)

And:

\(y=\frac{q}{\sin\theta}\ - p \frac{\cos\theta}{\sin\theta}\)

Which can be written as:

\(y=\frac{q}{\sin\theta}\ -p \cot\theta\)
 

Similar threads

  • · Replies 22 ·
Replies
22
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
9
Views
988