Finding the Min of $\dfrac{1}{x}+\dfrac{1}{y}$ Given $x,y>0$ and $9x+4y=2005$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around finding the minimum value of the expression $\dfrac{1}{x}+\dfrac{1}{y}$ under the constraints $x,y>0$ and $9x+4y=2005$. Participants explore various methods of approaching this optimization problem, including algebraic manipulation and calculus.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants derive the relationship between $x$ and $y$ from the constraint $9x + 4y = 2005$ and substitute it into the function to find a minimum.
  • One participant suggests using the quadratic formula to solve for $x$ after setting the derivative of the function to zero, indicating a methodical approach to find critical points.
  • Another participant proposes an estimation method, suggesting that the minimum occurs when $x=y$, leading to a different calculation for the minimum value.
  • A later reply introduces a different function $g(y)$ and derives a quadratic equation to find $y$, which leads to a proposed minimum value of $\frac{5}{401}$.
  • There is a request for clarification regarding LaTeX rendering issues, indicating some technical difficulties in presenting mathematical expressions.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the minimum value of the expression, as different methods yield varying results. Some approaches suggest a minimum of $\frac{5}{401}$, while others estimate a different value.

Contextual Notes

Participants express uncertainty regarding the correctness of their calculations and the rendering of mathematical expressions, which may affect the clarity of their arguments.

Albert1
Messages
1,221
Reaction score
0
Given:

$x,y>0$ and $9x+4y=2005$, find:

$\min\left(\dfrac{1}{x}+\dfrac{1}{y}\right)$
 
Last edited by a moderator:
Mathematics news on Phys.org
Albert said:
Given:

$x,y>0$ and $9x+4y=2005$, find:

$\min\left(\dfrac{1}{x}+\dfrac{1}{y}\right)$

$ \displaystyle \begin{align*} 9x + 4y &= 2005 \\ 4y &= -9x + 2005 \\ y &= \frac{-9x + 2005}{4} \end{align*} $

Substituting into the function \displaystyle \begin{align*} \frac{1}{x} + \frac{1}{y} \end{align*} gives

\displaystyle \begin{align*} f(x) &= \frac{1}{x} + \frac{1}{y} \\ &= \frac{1}{x} + \frac{1}{ \frac{-9x + 2005}{4} } \\ &= \frac{1}{x} + \frac{4}{-9x + 2005} \\ &= x^{-1} + 4 \left( -9x + 2005 \right)^{-1} \\ \\ f'(x) &= -x^{-2} + 36 \left( -9x + 2005 \right)^{-2} \\ &= -\frac{1}{x^2} + \frac{36}{\left( -9x + 2005 \right)^2 } \\ 0 &= -\frac{1}{x^2} + \frac{36}{\left( -9x + 2005 \right)^2} \textrm{ for a minimum } \\ \frac{1}{x^2} &= \frac{36}{\left( -9x + 2005 \right)^2} \\ \left( -9x + 2005 \right)^2 &= 36x^2 \\ 81x^2 - 36\, 090 + 4\, 020 \, 025 &= 36x^2 \\ 45x^2 - 36\, 090 + 4\, 020 \, 025 &= 0 \\ 9x^2 - 7218x + 804\,005 &= 0 \end{align*}

Now solve this using the Quadratic Formula, and then substitute this value to find the value of y, and double-check that this is in fact a minimum :)
 
Prove It said:
$ \displaystyle \begin{align*} 9x + 4y &= 2005 \\ 4y &= -9x + 2005 \\ y &= \frac{-9x + 2005}{4} \end{align*} $

Substituting into the function \displaystyle \begin{align*} \frac{1}{x} + \frac{1}{y} \end{align*} gives

\displaystyle \begin{align*} f(x) &= \frac{1}{x} + \frac{1}{y} \\ &= \frac{1}{x} + \frac{1}{ \frac{-9x + 2005}{4} } \\ &= \frac{1}{x} + \frac{4}{-9x + 2005} \\ &= x^{-1} + 4 \left( -9x + 2005 \right)^{-1} \\ \\ f'(x) &= -x^{-2} + 36 \left( -9x + 2005 \right)^{-2} \\ &= -\frac{1}{x^2} + \frac{36}{\left( -9x + 2005 \right)^2 } \\ 0 &= -\frac{1}{x^2} + \frac{36}{\left( -9x + 2005 \right)^2} \textrm{ for a minimum } \\ \frac{1}{x^2} &= \frac{36}{\left( -9x + 2005 \right)^2} \\ \left( -9x + 2005 \right)^2 &= 36x^2 \\ 81x^2 - 36\, 090 + 4\, 020 \, 025 &= 36x^2 \\ 45x^2 - 36\, 090 + 4\, 020 \, 025 &= 0 \\ 9x^2 - 7218x + 804\,005 &= 0 \end{align*}

Now solve this using the Quadratic Formula, and then substitute this value to find the value of y, and double-check that this is in fact a minimum :)

now what is the value of the minimum ?
 
Albert said:
now what is the value of the minimum ?

You're not going to bring anything to the party? :P
 
The answer is $\dfrac{5}{401}=\dfrac{25}{2005}\approx0.0125$

Now I do it (in a quick way) only by estimation:

$\displaystyle \frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}= \frac{2}{x}$ it will happen when $x=y$.

$\therefore\,9x+4y=13x=2005\,\therefore\,x=\dfrac{2005}{13}$ and the minimum is $\approx\dfrac{26}{2005}\approx0.013$
 
Last edited by a moderator:
It is very strange the "LaTeX" in my post shows
normally at day time but reveals
"MATH EXPRESSION ERROR" at night
Can someone give me an aid ?
my best appreciation
Albert
 
Last edited:
$ \frac {1}{x}+\frac{1}{y}=\frac{2005+5y}{2005y-4y^2}=g(y)$

find the derivatives of g(y)=g'(y)

let g'(y)=0

we get :

$ 20y^2+8\times2005y-2005^2=0$

(10y-2005)(2y+2005)=0

$\therefore y=\frac {401}{2}\,\,,\,\, x= \frac {401}{3}\,\, (here\,\, x,y >0)$

$ min(\frac {1}{x}+\frac{1}{y})= =\frac {5}{401}$
 

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
6
Views
2K