chwala
Gold Member
- 2,825
- 413
- Homework Statement
- Finding the modulus and argument of complex numbers of the form ##\dfrac{a}{(b±ci)^n}## where ##a,b,c,n ∈ \mathbb{Z}##
- Relevant Equations
- complex numbers
Doing a refreshing on this, let me come up with my own example,
Finding the modulus and argument of ##\dfrac{4}{(1-i)^3}##,
Considering the denominator,
Let ##z=1-i, |z|=\sqrt 2→ z^3=\sqrt 2⋅ \sqrt 2⋅\sqrt 2 = 2\sqrt 2##, noting that ##arg z_1z_2=arg z_1 + arg z_2##, then
argument ##z= -\dfrac{π}{4}-\dfrac{π}{4}-\dfrac{π}{4}=-\dfrac{3π}{4}##.
Considering the numerator,
modulus=4, argument = 0.
Now having both numerator and denominator in mind, and noting that modulus,
##\left|\dfrac{z_1}{z_2}\right|=\dfrac{|z_1|}{|z_2|}##
##\left|\dfrac{4}{2\sqrt2}\right|=\dfrac{|4|}{|2\sqrt2|}=\dfrac{2\sqrt2}{2}=\sqrt 2##
argument ##Z= \left[0-\dfrac{3π}{4}\right]=\dfrac{3π}{4}##.
The steps seem clear and quite easy, question is does this apply to all forms i.e ##\dfrac{a}{(b±ci)^n}##? or are there cases where this fails.
Finding the modulus and argument of ##\dfrac{4}{(1-i)^3}##,
Considering the denominator,
Let ##z=1-i, |z|=\sqrt 2→ z^3=\sqrt 2⋅ \sqrt 2⋅\sqrt 2 = 2\sqrt 2##, noting that ##arg z_1z_2=arg z_1 + arg z_2##, then
argument ##z= -\dfrac{π}{4}-\dfrac{π}{4}-\dfrac{π}{4}=-\dfrac{3π}{4}##.
Considering the numerator,
modulus=4, argument = 0.
Now having both numerator and denominator in mind, and noting that modulus,
##\left|\dfrac{z_1}{z_2}\right|=\dfrac{|z_1|}{|z_2|}##
##\left|\dfrac{4}{2\sqrt2}\right|=\dfrac{|4|}{|2\sqrt2|}=\dfrac{2\sqrt2}{2}=\sqrt 2##
argument ##Z= \left[0-\dfrac{3π}{4}\right]=\dfrac{3π}{4}##.
The steps seem clear and quite easy, question is does this apply to all forms i.e ##\dfrac{a}{(b±ci)^n}##? or are there cases where this fails.
Last edited: