I Finding the period in a modular exponentiation sequence

  • I
  • Thread starter Thread starter Bob Walance
  • Start date Start date
  • Tags Tags
    Period Sequence
Bob Walance
Insights Author
Gold Member
Messages
82
Reaction score
55
This question is related to Shor's algorithm and its use of modular exponentiation.

In the table below, the period of the sequence in the third column is obviously equal to 4. That is, its value repeats every fourth row.

What I am trying to find out is why it is that when the first value in third column is congruent with 1 then the period of the sequence is the corresponding value of 'r'.

I have searched for an answer but have had no luck. It might be that I don't know how to phrase the question properly to find an answer on Google.

r
2^r
(2^r) % 15
0​
1​
1​
1​
2​
2​
2​
4​
4​
3​
8​
8​
4​
16​
1​
5​
32​
2​
6​
64​
4​
7​
128​
8​
8​
256​
1​
9​
512​
2​
10​
1024​
4​
11​
2048​
8​
12​
4096​
1​
13​
8192​
2​
 
Last edited:
Mathematics news on Phys.org
The answer to this question was provided to me at math.stackexchange. I have added an r=0 entry to the table above to make this answer clearer:

1) When r = 0 (let's call this r0) then '(2^0) % 15' is congruent with 1.
2) As r is incremented beyond 0 then '(2^r) % 15' will change from 1 to some other value.
3) When '(2^r) % 15' is equal to 1 again (at rP) then the period of the modular exponentiation sequence will be rP-r0=rP.

If the search for the period of this modular exponentiation sequence is done with a classical computer then it is convenient to find the first r (after r=0) that has the modexp value congruent with 1 again. However, if the search is done using a quantum computer then the quantum Fourier transform would be more efficient in finding the sequence's period.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top