MHB Finding the Rank and Basis for a matrix

Click For Summary
The rank of the given matrix is confirmed to be 2, as row 3 is dependent on rows 1 and 2. The reduced row echelon form shows that the first two rows are linearly independent, supporting this rank. The bases for the column space are identified as (1,2,3) and (0,-1,-1), while the bases for the row space can be either (1,0,1) and (0,1,-1) or the original matrix's first two rows. It is noted that using independent rows from the echelon form is generally preferable for determining bases. Overall, both the original and reduced forms can provide valid bases, but the echelon form is often clearer for identifying independence.
Logan Land
Messages
83
Reaction score
0
Find rank and the bases for column and row spaces of the matrices

1 0 1
2 -1 3
3 -1 4

Now I can see instantly that row 3 is just row 1 + row 2 so it must be dependent. So that means that row 3 will turn to a row of zeros and thus the rank(A)=2

if I reduced matrix A to row echelon it becomes
1 0 1
0 1 -1
0 0 0

so the rank must be 2 correct?

now what I am a little confused on is the bases
since I have reduced row echelon of
1 0 1
0 1 -1
0 0 0
would the bases of column space be (1,2,3),(0,-1,-1)?
and bases of row space be (1,0,1),(0,1,-1)?
 
Physics news on Phys.org
LLand314 said:
Now I can see instantly that row 3 is just row 1 + row 2 so it must be dependent. So that means that row 3 will turn to a row of zeros and thus the rank(A)=2
Yes, since the first two rows are linearly independent.

LLand314 said:
if I reduced matrix A to row echelon it becomes
1 0 1
0 1 -1
0 0 0

so the rank must be 2 correct?
Correct.

LLand314 said:
would the bases of column space be (1,2,3),(0,-1,-1)?
Yes, because row operations preserve (in)dependence of columns. Since in the resulting matrix the first two columns are independent, so are the first two columns in the original matrix.

LLand314 said:
and bases of row space be (1,0,1),(0,1,-1)?
Yes, or the first two rows of the original matrix.
 
Evgeny.Makarov said:
Yes, or the first two rows of the original matrix.

oh so either can be the basis? the original matrix rows or the row echelon rows?

(1,0,1),(2,-1,3) or (1,0,1),(0,1,-1)

both are row basis?
 
Yes. Each vector space (over $\Bbb R$ and of positive dimension) has infinitely many bases. Since the first two rows of the original matrix and independent and the third row is expressible through them, the first two rows form a basis.

In general, it is probably better to take independent rows of the echelon form rather than of the original matrix. Even though row operations do not change the row space, they may change which rows are independent. For example, if after some row operations it turns out that 1st, 3rd and 10th rows are independent, it does not follow that 1st, 3rd and 10th rows of the original matrix were independent.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K