Finding the Rank and Basis for a matrix

  • Context: MHB 
  • Thread starter Thread starter Logan Land
  • Start date Start date
  • Tags Tags
    Basis Matrix rank
Click For Summary
SUMMARY

The discussion focuses on determining the rank and bases for the column and row spaces of the matrix A, represented as:
1 0 1
2 -1 3
3 -1 4. The rank of matrix A is confirmed to be 2, as row 3 is dependent on rows 1 and 2. The bases for the column space are identified as (1,2,3) and (0,-1,-1), while the bases for the row space are (1,0,1) and (0,1,-1). It is established that either the original matrix rows or the reduced row echelon form can serve as the basis, but using independent rows from the echelon form is generally preferred.

PREREQUISITES
  • Understanding of matrix rank and linear independence
  • Familiarity with row echelon form and reduced row echelon form
  • Knowledge of vector spaces and bases
  • Basic operations on matrices, including row operations
NEXT STEPS
  • Study the concept of linear independence in depth
  • Learn about the implications of row operations on matrix properties
  • Explore the relationship between row space and column space
  • Investigate the use of the Rank-Nullity Theorem in linear algebra
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, matrix theory, or anyone involved in data analysis requiring matrix manipulation.

Logan Land
Messages
83
Reaction score
0
Find rank and the bases for column and row spaces of the matrices

1 0 1
2 -1 3
3 -1 4

Now I can see instantly that row 3 is just row 1 + row 2 so it must be dependent. So that means that row 3 will turn to a row of zeros and thus the rank(A)=2

if I reduced matrix A to row echelon it becomes
1 0 1
0 1 -1
0 0 0

so the rank must be 2 correct?

now what I am a little confused on is the bases
since I have reduced row echelon of
1 0 1
0 1 -1
0 0 0
would the bases of column space be (1,2,3),(0,-1,-1)?
and bases of row space be (1,0,1),(0,1,-1)?
 
Physics news on Phys.org
LLand314 said:
Now I can see instantly that row 3 is just row 1 + row 2 so it must be dependent. So that means that row 3 will turn to a row of zeros and thus the rank(A)=2
Yes, since the first two rows are linearly independent.

LLand314 said:
if I reduced matrix A to row echelon it becomes
1 0 1
0 1 -1
0 0 0

so the rank must be 2 correct?
Correct.

LLand314 said:
would the bases of column space be (1,2,3),(0,-1,-1)?
Yes, because row operations preserve (in)dependence of columns. Since in the resulting matrix the first two columns are independent, so are the first two columns in the original matrix.

LLand314 said:
and bases of row space be (1,0,1),(0,1,-1)?
Yes, or the first two rows of the original matrix.
 
Evgeny.Makarov said:
Yes, or the first two rows of the original matrix.

oh so either can be the basis? the original matrix rows or the row echelon rows?

(1,0,1),(2,-1,3) or (1,0,1),(0,1,-1)

both are row basis?
 
Yes. Each vector space (over $\Bbb R$ and of positive dimension) has infinitely many bases. Since the first two rows of the original matrix and independent and the third row is expressible through them, the first two rows form a basis.

In general, it is probably better to take independent rows of the echelon form rather than of the original matrix. Even though row operations do not change the row space, they may change which rows are independent. For example, if after some row operations it turns out that 1st, 3rd and 10th rows are independent, it does not follow that 1st, 3rd and 10th rows of the original matrix were independent.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K