MHB Finding the Rank and Basis for a matrix

Logan Land
Messages
83
Reaction score
0
Find rank and the bases for column and row spaces of the matrices

1 0 1
2 -1 3
3 -1 4

Now I can see instantly that row 3 is just row 1 + row 2 so it must be dependent. So that means that row 3 will turn to a row of zeros and thus the rank(A)=2

if I reduced matrix A to row echelon it becomes
1 0 1
0 1 -1
0 0 0

so the rank must be 2 correct?

now what I am a little confused on is the bases
since I have reduced row echelon of
1 0 1
0 1 -1
0 0 0
would the bases of column space be (1,2,3),(0,-1,-1)?
and bases of row space be (1,0,1),(0,1,-1)?
 
Physics news on Phys.org
LLand314 said:
Now I can see instantly that row 3 is just row 1 + row 2 so it must be dependent. So that means that row 3 will turn to a row of zeros and thus the rank(A)=2
Yes, since the first two rows are linearly independent.

LLand314 said:
if I reduced matrix A to row echelon it becomes
1 0 1
0 1 -1
0 0 0

so the rank must be 2 correct?
Correct.

LLand314 said:
would the bases of column space be (1,2,3),(0,-1,-1)?
Yes, because row operations preserve (in)dependence of columns. Since in the resulting matrix the first two columns are independent, so are the first two columns in the original matrix.

LLand314 said:
and bases of row space be (1,0,1),(0,1,-1)?
Yes, or the first two rows of the original matrix.
 
Evgeny.Makarov said:
Yes, or the first two rows of the original matrix.

oh so either can be the basis? the original matrix rows or the row echelon rows?

(1,0,1),(2,-1,3) or (1,0,1),(0,1,-1)

both are row basis?
 
Yes. Each vector space (over $\Bbb R$ and of positive dimension) has infinitely many bases. Since the first two rows of the original matrix and independent and the third row is expressible through them, the first two rows form a basis.

In general, it is probably better to take independent rows of the echelon form rather than of the original matrix. Even though row operations do not change the row space, they may change which rows are independent. For example, if after some row operations it turns out that 1st, 3rd and 10th rows are independent, it does not follow that 1st, 3rd and 10th rows of the original matrix were independent.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top