Albert1
- 1,221
- 0
$a,b\in R$
$if:\,\, a^2+ab-b^2=0$
$find:\,\, \dfrac {a}{b}=? $
$if:\,\, a^2+ab-b^2=0$
$find:\,\, \dfrac {a}{b}=? $
The discussion centers on solving the equation \(a^2 + ab - b^2 = 0\) to find the ratio \(\frac{a}{b}\). The equation can be rearranged to express \(a\) in terms of \(b\) or vice versa. The solutions yield two potential ratios: \(\frac{a}{b} = \frac{-b \pm \sqrt{5b^2}}{2b}\), simplifying to \(\frac{-1 \pm \sqrt{5}}{2}\). This provides a definitive method for determining the ratio of \(a\) to \(b\).
PREREQUISITESMathematicians, students studying algebra, and anyone interested in solving polynomial equations.
Albert said:$a,b\in R$
$if:\,\, a^2+ab-b^2=0$
$find:\,\, \dfrac {a}{b}=? $