Finding the Ratio of $a$ to $b$ for $a^2+ab-b^2=0$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Ratio
Click For Summary
SUMMARY

The discussion centers on solving the equation \(a^2 + ab - b^2 = 0\) to find the ratio \(\frac{a}{b}\). The equation can be rearranged to express \(a\) in terms of \(b\) or vice versa. The solutions yield two potential ratios: \(\frac{a}{b} = \frac{-b \pm \sqrt{5b^2}}{2b}\), simplifying to \(\frac{-1 \pm \sqrt{5}}{2}\). This provides a definitive method for determining the ratio of \(a\) to \(b\).

PREREQUISITES
  • Understanding of quadratic equations
  • Familiarity with algebraic manipulation
  • Knowledge of the quadratic formula
  • Basic concepts of real numbers
NEXT STEPS
  • Study the quadratic formula and its applications
  • Explore methods for solving polynomial equations
  • Learn about the properties of real numbers in algebra
  • Investigate the implications of solutions in real-world scenarios
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in solving polynomial equations.

Albert1
Messages
1,221
Reaction score
0
$a,b\in R$

$if:\,\, a^2+ab-b^2=0$

$find:\,\, \dfrac {a}{b}=? $
 
Mathematics news on Phys.org
Re: find a/b

My solution:

If we let $a=bk$, then $a^2+ab-b^2=0$ becomes $(bk)^2+(bk)b-b^2=0$ or simply $b^2(k^2+k-1)=0$ but we're told that $a,b\in R$, thus $b \ne 0$ but $k^2+k-1=0$ or $k=\dfrac{-1\pm\sqrt{5}}{2}$, i.e. $\dfrac{a}{b}=\dfrac{-1\pm\sqrt{5}}{2}$.
 
Re: find a/b

Albert said:
$a,b\in R$

$if:\,\, a^2+ab-b^2=0$

$find:\,\, \dfrac {a}{b}=? $

Hello.
a=\dfrac{-b \pm \sqrt{b^2+4b^2}}{2}= \dfrac{-b \pm b \sqrt{5}}{2}

\dfrac{a}{b}=\dfrac{-b \pm b \sqrt{5}}{2b}= \dfrac{-1 \pm \sqrt{5}}{2}

Regards.
 
Re: find a/b

$a^2+ab-b^2=0---(1)$
from (1) we have :$\dfrac{a}{b}=\dfrac{b}{a}-1 ---(2)$
let $x=\dfrac{a}{b}$
$\therefore x^2+x-1=0$
$x=\dfrac{-1\pm\sqrt{5}}{2}$
 
Re: find a/b

Good question
as others have pointed If we put $x = \frac{a}{b}$ we get $x^2 +x -1= 0 $
Now if we put y = -x we get $y^2 = 1 + y $ so solutions are $\phi$ and $-1/\phi$ where $\phi$ is the golden ratio
This gives solution x = -$\phi$ and $1/\phi$
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K