MHB Finding the Sum of Real Numbers Satisfying Cubic Equations

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The real numbers $$x$$ and $$y$$ satisfy $$x^3-3x^2+5x-17=0$$ and $$y^3-3y^2+5y+11=0$$. Determine the value of $$x+y$$.
 
Mathematics news on Phys.org
Let $$z=x+y$$ and so the first equation becomes:

$$(z-y)^3-3(z-y)^2+5(z-y)-17=0$$

Which becomes:

$$z^3-3yz^2+3y^2z-y^3-3z^2+6yz-3y^2-5y+5z-17=0$$

$$z^3-3yz^2+3y^2z-3z^2+6yz-3y^2+5z-6-\left(y^3+5y+11 \right)=0$$

Using the second equation, this becomes:

(1) $$z^3-3yz^2+3y^2z-3z^2+6yz-6y^2+5z-6=0$$

Now, the second equation may be written:

$$(z-x)^3-3(z-x)^2+5(z-x)+11=0$$

Which becomes:

$$z^3-3xz^2+3x^2z-x^3-3z^2+6xz-3x^2-5x+5z+11=0$$

$$z^3-3xz^2+3x^2z-3z^2+6xz-3x^2+5z-6-\left(x^3+5x-17 \right)=0$$

Using the first equation, this becomes:

(2) $$z^3-3xz^2+3x^2z-3z^2+6xz-6x^2+5z-6=0$$

Adding (1) and (2), and simplifying, we have:

$$(z-2)\left(3\left(x^2+y^2 \right)-\left(z^2+2z-6 \right) \right)=0$$

Hence:

$$z=x+y=2$$
 
Well done MarkFL for submitting a complete and correct solution in such a short period of time!(Clapping)

I just love your approach so so much!(Inlove)
 
Here's my solution
Let $x = u +1$ and $y = v + 1$ giving

$u^3+2u-14=0$ and $v^3+2v+14=0$.

Adding these two gives

$u^3+v^3+2u+2v = 0$ or $ (u+v)(u^2-uv+v^2+2) = 0$.

Since the second term is strictly positive then $u+v = 0$ so that $x + y = u+v+2 = 2$.
 
Jester said:
Here's my solution
Let $x = u +1$ and $y = v + 1$ giving

$u^3+2u-14=0$ and $v^3+2v+14=0$.

Adding these two gives

$u^3+v^3+2u+2v = 0$ or $ (u+v)(u^2-uv+v^2+2) = 0$.

Since the second term is strictly positive then $u+v = 0$ so that $x + y = u+v+2 = 2$.
(Shakes his head.) Wow! (Bow)

-Dan
 
Jester said:
Here's my solution
Let $x = u +1$ and $y = v + 1$ giving

$u^3+2u-14=0$ and $v^3+2v+14=0$.

Adding these two gives

$u^3+v^3+2u+2v = 0$ or $ (u+v)(u^2-uv+v^2+2) = 0$.

Since the second term is strictly positive then $u+v = 0$ so that $x + y = u+v+2 = 2$.

Thanks for participating, Jester and WOW!(Clapping) This is surely another impressive and great way to tackle this problem!(Nerd)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
4
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Back
Top