Finding the Sum of Real Numbers Satisfying Cubic Equations

Click For Summary
SUMMARY

The discussion centers on solving the cubic equations $$x^3-3x^2+5x-17=0$$ and $$y^3-3y^2+5y+11=0$$ to find the sum of the real numbers $$x$$ and $$y$$. MarkFL provided a complete and correct solution, demonstrating an effective approach to the problem. Participants expressed admiration for the solutions presented, highlighting the collaborative nature of the discussion.

PREREQUISITES
  • Understanding of cubic equations and their properties
  • Familiarity with algebraic manipulation techniques
  • Knowledge of real number solutions in polynomial equations
  • Basic skills in mathematical problem-solving
NEXT STEPS
  • Study the methods for solving cubic equations, including Cardano's formula
  • Explore the relationship between the coefficients and roots of polynomials
  • Learn about the graphical representation of cubic functions
  • Investigate numerical methods for approximating roots of polynomials
USEFUL FOR

Mathematics students, educators, and anyone interested in algebraic problem-solving and cubic equations.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The real numbers $$x$$ and $$y$$ satisfy $$x^3-3x^2+5x-17=0$$ and $$y^3-3y^2+5y+11=0$$. Determine the value of $$x+y$$.
 
Mathematics news on Phys.org
Let $$z=x+y$$ and so the first equation becomes:

$$(z-y)^3-3(z-y)^2+5(z-y)-17=0$$

Which becomes:

$$z^3-3yz^2+3y^2z-y^3-3z^2+6yz-3y^2-5y+5z-17=0$$

$$z^3-3yz^2+3y^2z-3z^2+6yz-3y^2+5z-6-\left(y^3+5y+11 \right)=0$$

Using the second equation, this becomes:

(1) $$z^3-3yz^2+3y^2z-3z^2+6yz-6y^2+5z-6=0$$

Now, the second equation may be written:

$$(z-x)^3-3(z-x)^2+5(z-x)+11=0$$

Which becomes:

$$z^3-3xz^2+3x^2z-x^3-3z^2+6xz-3x^2-5x+5z+11=0$$

$$z^3-3xz^2+3x^2z-3z^2+6xz-3x^2+5z-6-\left(x^3+5x-17 \right)=0$$

Using the first equation, this becomes:

(2) $$z^3-3xz^2+3x^2z-3z^2+6xz-6x^2+5z-6=0$$

Adding (1) and (2), and simplifying, we have:

$$(z-2)\left(3\left(x^2+y^2 \right)-\left(z^2+2z-6 \right) \right)=0$$

Hence:

$$z=x+y=2$$
 
Well done MarkFL for submitting a complete and correct solution in such a short period of time!(Clapping)

I just love your approach so so much!(Inlove)
 
Here's my solution
Let $x = u +1$ and $y = v + 1$ giving

$u^3+2u-14=0$ and $v^3+2v+14=0$.

Adding these two gives

$u^3+v^3+2u+2v = 0$ or $ (u+v)(u^2-uv+v^2+2) = 0$.

Since the second term is strictly positive then $u+v = 0$ so that $x + y = u+v+2 = 2$.
 
Jester said:
Here's my solution
Let $x = u +1$ and $y = v + 1$ giving

$u^3+2u-14=0$ and $v^3+2v+14=0$.

Adding these two gives

$u^3+v^3+2u+2v = 0$ or $ (u+v)(u^2-uv+v^2+2) = 0$.

Since the second term is strictly positive then $u+v = 0$ so that $x + y = u+v+2 = 2$.
(Shakes his head.) Wow! (Bow)

-Dan
 
Jester said:
Here's my solution
Let $x = u +1$ and $y = v + 1$ giving

$u^3+2u-14=0$ and $v^3+2v+14=0$.

Adding these two gives

$u^3+v^3+2u+2v = 0$ or $ (u+v)(u^2-uv+v^2+2) = 0$.

Since the second term is strictly positive then $u+v = 0$ so that $x + y = u+v+2 = 2$.

Thanks for participating, Jester and WOW!(Clapping) This is surely another impressive and great way to tackle this problem!(Nerd)
 

Similar threads

Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K