Finding the velocity of a car in a different frame of reference

Click For Summary
The discussion focuses on calculating the velocity of a car from different frames of reference, specifically comparing the road (frame S) and a second car (frame S'). The initial equation for the first car's velocity is given as v = v_0 + at. The Galilean transformation is introduced, leading to confusion about the correct expression for V, which represents the speed of the second car relative to the first. Clarification is provided that V is indeed the speed of the second car with respect to the road, and the final equation simplifies to v' = V, confirming the relationship between the two frames. The conversation highlights the need for precise wording in physics problems to avoid misunderstandings.
Redwaves
Messages
134
Reaction score
7
Homework Statement
A car is moving on a road with a initial speed ##v = v_0## and then it starts to speed up with ##a_0## what's the speed of this car in the frame of reference on a second car moving at the speed V.
Relevant Equations
##v' = (v_0 + at) - V##
Here's what I did so far.
The velocity of the first car is ##v = v_0 +at##

Frame of reference S = the road
Frame of reference S' = the second car

thus, v' is the speed of the first car in the frame of reference S' and v the speed in the frame of reference S.

Here's what make me doubt.
The Galilean transformation
##v' = v - V##
V should be the speed between S and S', in this case what I wrote is wrong.
V should be ##(v_0 + at) - V ##, right?

And then, ##v' = (v_0 + at) - ((v_0 + at) - V)## does it make sense ?
 
Physics news on Phys.org
Redwaves said:
Here's what make me doubt.
The Galilean transformation
##v' = v - V##
V should be the speed between S and S', in this case what I wrote is wrong.
V should be ##(v_0 + at) - V ##, right?

And then, ##v' = (v_0 + at) - ((v_0 + at) - V)## does it make sense ?
You were correct the first time. V is the speed of the second car (and thus frame S') with respect to S.

Realize that your final equation becomes ##v' = (v_0 + at) - ((v_0 + at) - V) = V##. Does that make sense?
 
I see. I didn't realize that the road is at rest... Of course the speed between S and S' is V.
Thanks!
 
Redwaves said:
Homework Statement:: A car is moving on a road with a initial speed ##v = v_0## and then it starts to speed up with ##a_0## what's the speed of this car in the frame of reference on a second car moving at the speed V.
If someone is going to set questions like this, they ought to be more precise, IMO:

A car is moving on relative to a road with an initial speed velocity ##v = v_0## and then it starts to speed up with accelerate at ##a_0##. What's the speed velocity of this car in the frame of reference of a second car moving at the speed velocity V relative to the road.
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
6
Views
2K
  • · Replies 126 ·
5
Replies
126
Views
11K
Replies
27
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
Replies
12
Views
1K
Replies
1
Views
1K