Finding the x component of a vector given this angle

Click For Summary
To find the x component of a vector given an angle of 33.7 degrees, the relationship A = |A|cos33.7 can be used, leading to A = |A|0.83195. The discussion highlights the challenge of determining the unknown magnitude and x component algebraically, rather than through inefficient trial and error. It emphasizes the importance of understanding direction angles and direction cosines, where cosθ relates to the x component and the vector's magnitude. A more efficient method involves expressing cosθ in terms of x and |v|, allowing for algebraic solutions, potentially leading to a quadratic equation. Overall, the focus is on finding a systematic approach to solve for x in vector problems.
Indras
Messages
2
Reaction score
0
Homework Statement
This is probably a simple question for most of you but I can't seem to figure out this format of solving a vector when there are two unknowns (Unknown magnitude and unknown x). Thank you!
Relevant Equations
V = xi + 5.9j + 9.8k
If V makes an angle with i of 33.7 degrees, what is x? x is positive
A = |A|cos33.7

A = |A|0.83195
 
Physics news on Phys.org
Indras said:
Homework Statement:: This is probably a simple question for most of you but I can't seem to figure out this format of solving a vector when there are two unknowns (Unknown magnitude and unknown x). Thank you!
Relevant Equations:: V = xi + 5.9j + 9.8k
If V makes an angle with i of 33.7 degrees, what is x? x is positive

A = |A|cos33.7

A = |A|0.83195
Do you think you could find two different values of ##x## that satisfy that requirement?
 
Thanks!

They want the x component in decimal form. It definitely involves some algebra. For example I can solve it through process of elimination by guessing for x and solving until the magnitude divides by x and equals 0.83195.
So for this question it'd be 20.615 = √(17.15)^2 + (5.9)^2 + (9.8)^2
17.15 / 20.615 = .8319
Which gives me 33.7 degrees

But this method is definitely not efficient so there must be an algebraic method to find x more quickly?
 
Indras said:
Thanks!

They want the x component in decimal form. It definitely involves some algebra. For example I can solve it through process of elimination by guessing for x and solving until the magnitude divides by x and equals 0.83195.
So for this question it'd be 20.615 = √(17.15)^2 + (5.9)^2 + (9.8)^2
17.15 / 20.615 = .8319
Which gives me 33.7 degrees

But this method is definitely not efficient so there must be an algebraic method to find x more quickly?
You have ##\vec v \cdot \vec i = |\vec v| \cos \theta = \sqrt{x^2 + y^2 + z^2} \cos \theta##.

Can you find another expression for ##\vec v \cdot \vec i ##?
 
  • Like
Likes Steve4Physics
Indras said:
.
.
But this method is definitely not efficient so there must be an algebraic method to find x more quickly?
In this question θ is called the vector's ‘direction angle’ with respect to the x-axis. And cosθ is called the ‘direction cosine’ with respect to the x-axis.

With x, y and z the components of v, the length (magnitude) of v is |v| = √(x² + y² + z²).

If you can’t draw your own, a search will give many helpful diagrams explaining (3D) direction angles/cosines.

Using your diagram, can you express cosθ in terms of x and |v|? Finding x is then just algebra (solving a quadratic).
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 8 ·
Replies
8
Views
657
Replies
8
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
11
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
Replies
4
Views
1K