Finding this recurrence relation for stuck-together right-angle triangles

Click For Summary

Discussion Overview

The discussion revolves around deriving a recurrence relation for coordinates associated with right-angle triangles, specifically focusing on the variables \(x_n\) and \(y_n\) based on angles \(\theta_i\). Participants explore geometric patterns and trigonometric identities to establish the relationship, which is relevant in both theoretical and applied contexts.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested

Main Points Raised

  • One participant presents initial conditions \(x_0 = 1\) and \(y_0 = 0\), seeking to derive a recurrence relationship for \(x_{n+1}\) and \(x_n\).
  • Another participant suggests using the angle sum identities, proposing that \(x_n = \cos \alpha_n\) and \(y_n = \sin \alpha_n\), leading to the relations \(x_{n+1} = x_n \cos \theta_n - y_n \sin \theta_n\) and \(y_{n+1} = x_n \sin \theta_n + y_n \cos \theta_n\).
  • Further clarification is requested regarding the specific trigonometric identities used to derive the recurrence relations, with a focus on the cosine and sine angle sum formulas.
  • One participant notes an alternative recurrence relation involving tangent, stating \(x_{n+1} = x_n - y_n \tan(\theta_{n+1})\) and \(y_{n+1} = y_n + x_n \tan(\theta_{n+1})\), prompting a comparison with the previously mentioned relations.
  • There is a discussion about the implications of setting \(\theta_n = \frac{\pi}{2}\) and how it may affect the derived relations.

Areas of Agreement / Disagreement

Participants express differing views on the correct form of the recurrence relations, with some supporting the angle sum identities while others propose a tangent-based approach. The discussion remains unresolved regarding which relation is more appropriate or how they may differ under certain conditions.

Contextual Notes

Participants acknowledge that assumptions about the angles, such as \(\theta < \frac{\pi}{2}\), may influence the validity of the derived relations. There is also an indication that the geometric interpretation may not fully capture all scenarios.

nacho-man
Messages
166
Reaction score
0
Given the image:
http://i.stack.imgur.com/EJ3ax.jpgand that $x_0 = 1, y_0=0$ and $\text{angles} \space θ_i
, i = 1, 2, 3, · · ·$ can be arbitrarily picked.

How can I derive a recurrence relationship for $x_{n+1}$ and $x_n$?

I actually know what the relationship is, however, don't know how to derive it.

My first attempt was to try and see some geometrical pattern, so I did the following:

http://i.stack.imgur.com/4BNyq.jpg

But still couldn't find a derivation.

Although it is obvious to see that $x_0 = x_1$

so for $n = 0$

We have $x_{1} = x_{0}+0 $

any tips, hints or help very much appreciated.
 
Mathematics news on Phys.org
nacho said:
Given the image:
http://i.stack.imgur.com/EJ3ax.jpgand that $x_0 = 1, y_0=0$ and $\text{angles} \space θ_i
, i = 1, 2, 3, · · ·$ can be arbitrarily picked.

How can I derive a recurrence relationship for $x_{n+1}$ and $x_n$?

I actually know what the relationship is, however, don't know how to derive it.

My first attempt was to try and see some geometrical pattern, so I did the following:

http://i.stack.imgur.com/4BNyq.jpg

But still couldn't find a derivation.

Although it is obvious to see that $x_0 = x_1$

so for $n = 0$

We have $x_{1} = x_{0}+0 $

any tips, hints or help very much appreciated.

Setting $\displaystyle \alpha_{n}= \theta_{0} + \sum_{i =1}^{n} \theta_{n}$ is $x_{n} = \cos \alpha_{n}$ and $y_{n} = \sin \alpha_{n}$, so that, applying the 'angle sum identities', the requested recursive relation are...

$\displaystyle x_{n+1} = x_{n}\ \cos \theta_{n} - y_{n}\ \sin \theta_{n}$

$\displaystyle y_{n+1} = x_{n}\ \sin \theta_{n} + y_{n}\ \cos \theta_{n}\ (1)$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Setting $\displaystyle \alpha_{n}= \theta_{0} + \sum_{i =1}^{n} \theta_{n}$ is $x_{n} = \cos \alpha_{n}$ and $y_{n} = \sin \alpha_{n}$, so that, applying the 'angle sum identities', the requested recursive relation are...

$\displaystyle x_{n+1} = x_{n}\ \cos \theta_{n} - y_{n}\ \sin \theta_{n}$

$\displaystyle y_{n+1} = x_{n}\ \sin \theta_{n} + y_{n}\ \cos \theta_{n}\ (1)$

Kind regards

$\chi$ $\sigma$

Still helpful as ever chi sigma!

Thank you my friend.

Could I just clarify which formula you used to get the recursive relationship?
can it be found on this page anywhere?:
Trigonometric Identities

I am thinking it is this one:

$\cos(α + β) = \cos(α)\cos(β) – \sin(α)\sin(β) $Although, the recurrence relationship I am given for this is that

$x_{n+1} = x_n - y_n \tan(\theta_{n+1})$

and

$y_{n+1} = y_n + x_n \tan(\theta_{n+1})$
 
Last edited:
nacho said:
Still helpful as ever chi sigma!

Thank you my friend.

Could I just clarify which formula you used to get the recursive relationship?
can it be found on this page anywhere?:
Trigonometric Identities

I am thinking it is this one:

$\cos(α + β) = \cos(α)\cos(β) – \sin(α)\sin(β) $Although, the recurrence relationship I am given for this is that

$x_{n+1} = x_n - y_n \tan(\theta_{n+1})$

and

$y_{n+1} = y_n + x_n \tan(\theta_{n+1})$

If the $x_{n}$ are 'cosines' and the $y_{n}$ are 'sines' the trigonometric identities to be used are...

$\displaystyle \cos (\alpha + \beta) = \cos \alpha\ \cos \beta - \sin \alpha\ \sin \beta\ (1)$

$\displaystyle \sin (\alpha + \beta) = \cos \alpha\ \sin \beta + \sin \alpha\ \cos \beta\ (2)$

Regarding the relation You have found, I think it is in some way critical: what does it happen if fon one n is $\theta_{n} = \frac{\pi}{2}$?(Speechless)...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
If the $x_{n}$ are 'cosines' and the $y_{n}$ are 'sines' the trigonometric identities to be used are...

$\displaystyle \cos (\alpha + \beta) = \cos \alpha\ \cos \beta - \sin \alpha\ \sin \beta\ (1)$

$\displaystyle \sin (\alpha + \beta) = \cos \alpha\ \sin \beta + \sin \alpha\ \cos \beta\ (2)$

Regarding the relation You have found, I think it is in some way critical: what does it happen if fon one n is $\theta_{n} = \frac{\pi}{2}$?(Speechless)...

Kind regards

$\chi$ $\sigma$

$\chi$ the relation that I put was the one we are given to derive. So I guess the assumption is $\theta < \frac{\pi}{2}$, which is also consistent with the diagram given.

I.e We are told the recurrence relation is :$x_{n+1} = x_n - y_n \tan(\theta_{n+1})$

and

$y_{n+1} = y_n + x_n \tan(\theta_{n+1})$

and I need to derive it.

It seems almost similar to what you got, so I wonder where the difference comes about?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
32
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 125 ·
5
Replies
125
Views
20K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K