Finding ? to Make A Multiple of 7, 11, and 13

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Multiple
Click For Summary

Discussion Overview

The discussion revolves around finding a digit represented by '?' in the number A, formatted as $\underbrace{22--22}\,?\,\underbrace{33--33}$, such that A becomes a multiple of 7, 11, and 13. The scope includes mathematical reasoning and problem-solving related to divisibility.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Participants are tasked with determining the value of '?' that makes A a multiple of 7, 11, and 13.
  • Some participants specify that '?' must be a digit between 0 and 9.
  • There is a hint provided, but its content is not detailed in the posts.
  • One participant expresses a positive reaction to the problem, indicating engagement with the topic.

Areas of Agreement / Disagreement

Participants generally agree on the problem's parameters, but no consensus on specific solutions or methods has been reached.

Contextual Notes

There are limitations regarding the assumptions about the number A and the implications of the digit '?' on its divisibility by the specified numbers.

Albert1
Messages
1,221
Reaction score
0
A=$\underbrace{22--22}\,?\,\underbrace{33--33}$
$\,\,\,\,\,\, \,\,\,\,\, \,\,\, \,\, \,\, 50$$\,\,\,\,\,\,\,\, \,\,\,\,\, \,\,\,\,\,\, \,\, 50$
find $?$
(1) to make A a multiple of $7$
(2) to make A a multiple of $11$
(3) to make A a multiple of $13$
 
Last edited:
Mathematics news on Phys.org
Albert said:
A=$\underbrace{22--22}\,?\,\underbrace{33--33}$
$\,\,\,\,\,\, \,\,\,\,\, \,\,\, \,\, \,\, 50$$\,\,\,\,\,\,\,\, \,\,\,\,\, \,\,\,\,\,\, \,\, 50$
find $? (0\leq ? \leq 9)$
(1) to make A a multiple of $7$
(2) to make A a multiple of $11$
(3) to make A a multiple of $13$
hint :
$7|111111,\,\,11|111111, \, and \,\, 13|111111$
 
Albert said:
A=$\underbrace{22--22}\,?\,\underbrace{33--33}$
$\,\,\,\,\,\, \,\,\,\,\, \,\,\, \,\, \,\, 50$$\,\,\,\,\,\,\,\, \,\,\,\,\, \,\,\,\,\,\, \,\, 50$
find $?$
(1) to make A a multiple of $7$
(2) to make A a multiple of $11$
(3) to make A a multiple of $13$

we have xxxxxx is divisible by 1001 or 7 * 11 * 13
so we remove 48 2's from A that is subtract 48 $2's * 10^{53}$ and then subtract {3 ...3}( 48 3's) and divide by 10^{48} and we get 22?33 . we have 22?22 divisible by 22 subtracting get
?11 . we can check that(by putting from 0 to 9) ? is 0 to be divisible by 11. 5 to be divisible by 7 and 6 to be divisible by 13
 
kaliprasad said:
we have xxxxxx is divisible by 1001 or 7 * 11 * 13
so we remove 48 2's from A that is subtract 48 $2's * 10^{53}$ and then subtract {3 ...3}( 48 3's) and divide by 10^{48} and we get 22?33 . we have 22?22 divisible by 22 subtracting get
?11 . we can check that(by putting from 0 to 9) ? is 0 to be divisible by 11. 5 to be divisible by 7 and 6 to be divisible by 13
nice !
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K