MHB Finding values for a harmonic function

  • Thread starter Thread starter Stephen88
  • Start date Start date
  • Tags Tags
    Function Harmonic
Stephen88
Messages
60
Reaction score
0
A function u is harmonic in a domain containing the closed disc x^2+y^2 ≤ 1. Its values on the boundary
are given in terms of the polar angle # by sin# + cos#. Without finding u find
a. its value at the centre of the disc
b. its maximum and minimum values on the closed disc.
The disc is probably defined as D(x,y),r) where r=x^2+y^2 ≤ 1 and I think that the max and minimum can be find on the boundary of the set.But I think that u must also be continuous for that to happen.
Can someone give me a detailed explanation or an example on how to solve this problem?
 
Physics news on Phys.org
What is the best way to solve a and b?
 
For a use the mean value property for harmonic functions. For b use the maximum and minimum principle.
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top