I am solving the heat equation in a non comercial C++ finite elements code with explicit euler stepping, and adaptive meshes (coarse in the boundaries and finer in the center). I am aware the CFL condition for the heat equation depends on dt/h**2 for the 1D, 2D, 3D case. When I solve the equation in 2D this principle is followed and I require smaller grids following dt<h**2.(adsbygoogle = window.adsbygoogle || []).push({});

But in 3D the problem seems to be requiring finner and finer grids as I decrease the timestep in what appears to be a dt/h**3 behaviour. Does anyone have an idea what could be happening? is the CFL no longer valid in FEM and 3D? What other factors could be influencing?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Finite Element and CFL condition for the heat equation

Loading...

Similar Threads for Finite Element condition |
---|

A Runge Kutta finite difference of differential equations |

A Convergence order of central finite difference scheme |

A Finite Difference |

A Better way to find Finite Difference |

**Physics Forums | Science Articles, Homework Help, Discussion**