MHB Finite Fields - F_4 - Galois Field of Order 2^2

Click For Summary
SUMMARY

The discussion focuses on the assertion made in Beachy and Blair's "Abstract Algebra" regarding the cyclic nature of the multiplicative group of non-zero elements in the finite field F_4, which has order 3. According to group theory, specifically Lagrange's theorem, any group of prime order is cyclic. The proof provided confirms that since 3 is prime, the group of order 3 must be cyclic, thus validating the statement in the book.

PREREQUISITES
  • Understanding of group theory concepts, particularly Lagrange's theorem.
  • Familiarity with finite fields, specifically Galois fields.
  • Knowledge of cyclic groups and their properties.
  • Basic algebraic structures as discussed in "Abstract Algebra" by Beachy and Blair.
NEXT STEPS
  • Study the properties of Galois fields, particularly F_4 and its applications.
  • Learn more about Lagrange's theorem and its implications in group theory.
  • Explore cyclic groups and their generators in detail.
  • Read additional examples from "Abstract Algebra" by Beachy and Blair to reinforce understanding of finite fields.
USEFUL FOR

Students of abstract algebra, mathematicians interested in group theory, and anyone studying finite fields and their properties.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Beachy and Blair's book: Abstract Algebra (3rd Edition) and am currently studying Section 6.5: Finite Fields,

I need help with a statement of Beachy & Blair in Example 6.5.2 on page 298.

Example 6.5.2 reads as follows:https://www.physicsforums.com/attachments/2858In the above example, Beachy and Blair write the following:

" ... ... Note that since the multiplicative group of non-zero elements has order 3, it is cyclic. ... ... "

Can someone explain why this assertion follows?

Peter
 
Physics news on Phys.org
It is elementary group theory.

Theorem:

If $G$ is a group of order $p$, then $G$ is cyclic.

Proof:

Let $x \neq e$ be any non-identity element of $G$.

By Lagrange's theorem, the order of $\langle x\rangle$, the cyclic subgroup generated by $x$, has order dividing the order of $G$.

Since this is prime, either $|x| = 1$, or $|x| = p$ (by definition, the order of $x$ as an element, is also the order of $\langle x\rangle$ as a subgroup*).

If the order of $x$ is 1, then $x^1 = x = e$, contradicting our choice of $x$. Hence $|x| = p$, so that $\langle x\rangle = G$, so that $G$ is cyclic (with generator $x$).

*****************

Since 3 is prime, any group of order 3 is cyclic, QED.

*****************

*Note: perhaps this is not obvious. Suppose that $k$ is the smallest positive integer for which we have: $x^k = e$.

Now if $\{e,x,x^2,\dots,x^{k-1}\}$ are not all distinct, we have: $x^m = x^n$ for some $0 \leq m < n \leq k-1$.

Then $0 < n-m < k-1$, and we have:

$x^{n-m} = x^n(x^{-m}) = (x^n)(x^m)^{-1} = (x^n)(x^n)^{-1} = e$, contradicting our choice of $k$.

On the other hand, suppose $\langle x\rangle = \{e,x,x^2,\dots,x^{k-1}\}$, and these are distinct.

Since a group is closed under multiplication, we have $x^k \in \langle x\rangle$.

If $x^k = x^m$, for $0 < m \leq k-1$, then:

$e = (x^k)(x^k)^{-1} = (x^k)(x^m)^{-1} = x^k(x^{-m}) = x^{k-m}$, where $0 < k-m \leq k-1$, contradicting distinctness.

Thus the only viable possibility is $m = 0$, that is $x^k = e$, and no smaller positive integer has this property.
 
Last edited:
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K