MHB First, second and third derivatives of a polynomial

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $p(x)$ be a polynomial with real coefficients. Prove that if $p(x)-p'(x)-p''(x)+p'''(x)\ge 0$ for every real $x$, then $p(x)\ge 0$ for every real $x$.
 
Mathematics news on Phys.org
If $f(x)$ is a polynomial with real coefficients then $f(x)\to +\infty$ as $x\to\infty$ if the coefficient of its leading term is positive, and $f(x)\to -\infty$ as $x\to\infty$ if the coefficient of its leading term is negative. The degree of the derivative $f'(x)$ is lower than the degree of $f(x)$, so the polynomials $f(x)$ and $f(x) - f'(x)$ have the same leading term. Therefore either they both go to $+\infty$ or they both go to $-\infty$, as $x\to\infty$.

Now suppose that $f(x) - f'(x) \geqslant0$ for every real $x$. Then $f(x) - f'(x)\to +\infty$ as $x\to\infty$ and therefore $f(x)\to +\infty$ as $x\to\infty$. By the same argument, $f(x)\to +\infty$ as $x\to-\infty$. It follows that $f(x)$ has a finite minimum value, which it attains at some point $x_0$. Then $f'(x_0) = 0$. But $f(x_0) - f'(x_0) \geqslant0$. So $f(x_0)\geqslant0$. But if the minimum value of $f(x)$ is nonnegative then the function must be nonnegative everywhere. That proves
Fact 1: If $f(x)$ is a polynomial with real coefficients, and $f(x) - f'(x) \geqslant0$ for every real $x$, then $f(x)\geqslant0$ for every real $x$.
It follows that
Fact 2: If $f(x)$ is a polynomial with real coefficients, and $f(x) +f'(x) \geqslant0$ for every real $x$, then $f(x)\geqslant0$ for every real $x$.
To prove Fact 2, let $g(x) = f(-x)$. Then $g'(x) = -f'(-x)$ and so $g(x) - g'(x) = f(-x) + f'(-x) \geqslant0$ for every real $x$. It follows from Fact 1 that $g(x)\geqslant0$ for every real $x$. Therefore $f(x)\geqslant0$ for every real $x$.

Write $D= \frac d{dx}$ for the operator of differentiation, and $I$ for the identity operator. Then those two Facts can be written as
Fact 1: If $f(x)$ is a polynomial with real coefficients, and $(I-D)f(x) \geqslant0$ for every real $x$, then $f(x)\geqslant0$ for every real $x$;
Fact 2: If $f(x)$ is a polynomial with real coefficients, and $(I+D)f(x) \geqslant0$ for every real $x$, then $f(x)\geqslant0$ for every real $x$.

Now let $p(x)$ be a polynomial with real coefficients such that $p(x) - p'(x) - p''(x) + p'''(x) \geqslant0$ for every real $x$. That condition says that $(I-D - D^2 + D^3)p(x)\geqslant0$ for every real $x$. But $I-D-D^2+D^3 = (I-D)(I-D^2)$. Therefore $(I-D - D^2 + D^3)p(x) = (I-D)\bigl((I-D^2)p(x)\bigr) \geqslant0$ for every real $x$. It follows from Fact 1 that $(I-D^2)p(x) \geqslant0$ for every real $x$. But $I-D^2 = (I-D)(I+D)$. Therefore $(I-D)\bigl((I+D)p(x)\bigr) \geqslant0$ for every real $x$, and from Fact 1 again it follows that $(I+D)p(x) \geqslant0$ for every real $x$. Finally, by Fact 2 it then follows that $p(x) \geqslant0$ for every real $x$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
5
Views
1K
Replies
4
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
7
Views
2K
Replies
1
Views
997
Back
Top