Fishfood12m's question at Yahoo Answers regarding special integrating factors

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Factors Integrating
Click For Summary
SUMMARY

The discussion focuses on finding the integrating factor for the differential equation given by ydx + (2xy - e^(-2y))dy = 0. The equation is confirmed to be non-exact, leading to the calculation of the integrating factor μ(y) = e^(2y)/y. Multiplying the original equation by this integrating factor transforms it into an exact equation, allowing for straightforward integration. The final implicit solution is C = xe^(2y) - ln|y|.

PREREQUISITES
  • Understanding of first-order ordinary differential equations (ODEs)
  • Familiarity with exact equations and integrating factors
  • Knowledge of partial derivatives and their applications
  • Proficiency in integration techniques, particularly with exponential functions
NEXT STEPS
  • Study the method of finding integrating factors for non-exact ODEs
  • Learn about the application of the exactness condition in differential equations
  • Explore integration techniques involving logarithmic and exponential functions
  • Review linear first-order ODEs and their solutions using integrating factors
USEFUL FOR

Students preparing for exams in calculus or differential equations, educators teaching ODEs, and anyone looking to deepen their understanding of integrating factors in mathematical analysis.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Integrating Factor Help Please!?

I am preparing for a test and need to be able to find the integrating factor of problems similar to:

ydx + (2xy-e^(-2y))dy=0

All I want is how to find the integrating factor. From what I learned u'=U*(My - Nx) / N

That doesn't seem to work for me. Perhaps you can explain how to find it with step-by-step detail.

Thanks!

Here is a link to the question:

Integrating Factor Help Please!? - Yahoo! Answers

I have posted a link there so the OP can find my response.
 
Physics news on Phys.org
Hello fishfood12m,

We are given to solve:

$\displaystyle y\,dx + (2xy-e^{-2y})\,dy=0$

We should first verify that it is not exact:

$\displaystyle \frac{\delta}{\delta y}(y)=1$

$\displaystyle \frac{\delta}{\delta x}(2xy-e^{-2y})=2y$

Since the two partials are not equal, the equation is not exact.

Next, we look at the expression:

$\displaystyle \frac{\frac{\delta}{\delta y}(y)-\frac{\delta}{\delta x}(2xy-e^{-2y})}{2xy-e^{-2y}}=\frac{1-2y}{2xy-e^{-2y}}$

Since this does not depend on $x$ alone, we next look at:

$\displaystyle \frac{\frac{\delta}{\delta x}(2xy-e^{-2y})-\frac{\delta}{\delta y}(y)}{y}=\frac{2y-1}{y}=2-\frac{1}{y}$

Since this depends only on $y$, we compute the integrating factor as follows:

$\displaystyle \mu(y)=e^{\int2-\frac{1}{y}\,dy}=e^{2y-\ln|y|}=\frac{e^{2y}}{y}$

We now multiply the ODE by $\mu(y)$ observing we are losing the trivial solution $y\equiv0$:

$\displaystyle \frac{e^{2y}}{y}\cdot y\,dx + \frac{e^{2y}}{y}(2xy-e^{-2y})\,dy=0$

$\displaystyle e^{2y}\,dx + \left(2xe^{2y}-\frac{1}{y} \right)\,dy=0$

We can now easily see that the equation is exact. Even though you asked only for the integrating factor, I will go ahead and solve the equation.

Since our equation is exact, we may state:

$\displaystyle \frac{\delta F}{\delta x}=e^{2y}$

Integrating with respect to $x$ we get:

$\displaystyle F(x,y)=\int e^{2y}\,dx+g(y)=xe^{2y}+g(y)$

Now, to determine $g(y)$, we will take the partial derivative with respect to $y$ of both sides of the above equation and substitute $\displaystyle 2xe^{2y}-\frac{1}{y}$ for $\displaystyle \frac{\delta F}{\delta y}$:

$\displaystyle 2xe^{2y}-\frac{1}{y}=2xe^{2y}+g'(y)$

$\displaystyle -\frac{1}{y}=g'(y)$

Hence, integrating, and choosing the constant of integration to be zero, we find:

$\displaystyle g(y)=-\ln|y|$

And so we have:

$\displaystyle F(x,y)=xe^{2y}-\ln|y|$

Thus, the solution to the ODE is given implicitly by:

$\displaystyle C=xe^{2y}-\ln|y|$
 
Another way (without using integrating factor): we can write the equation in the form $\dfrac{dx}{dy}+2x=\dfrac{e^{-2y}}{y}$ which is linear on the dependent variable $x=x(y)$. Now, and using a well-known theorem, the general solution of the equation $x'+p(y)x=q(y)$ is

$xe^{\int pdy}-\displaystyle\int qe^{\int pdy}\;dy=C$
In our case, $p=2,q=\dfrac{e^{-2y}}{y}$ so,
$xe^{2y}-\displaystyle\int \frac{e^{-2y}}{y}\;e^{2y}\;dy=C$

Equivalenly:

$xe^{2y}-\ln |y|=C$
 

Similar threads

Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
5K