MHB Fishfood12m's question at Yahoo Answers regarding special integrating factors

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Integrating Factor Help Please!?

I am preparing for a test and need to be able to find the integrating factor of problems similar to:

ydx + (2xy-e^(-2y))dy=0

All I want is how to find the integrating factor. From what I learned u'=U*(My - Nx) / N

That doesn't seem to work for me. Perhaps you can explain how to find it with step-by-step detail.

Thanks!

Here is a link to the question:

Integrating Factor Help Please!? - Yahoo! Answers

I have posted a link there so the OP can find my response.
 
Mathematics news on Phys.org
Hello fishfood12m,

We are given to solve:

$\displaystyle y\,dx + (2xy-e^{-2y})\,dy=0$

We should first verify that it is not exact:

$\displaystyle \frac{\delta}{\delta y}(y)=1$

$\displaystyle \frac{\delta}{\delta x}(2xy-e^{-2y})=2y$

Since the two partials are not equal, the equation is not exact.

Next, we look at the expression:

$\displaystyle \frac{\frac{\delta}{\delta y}(y)-\frac{\delta}{\delta x}(2xy-e^{-2y})}{2xy-e^{-2y}}=\frac{1-2y}{2xy-e^{-2y}}$

Since this does not depend on $x$ alone, we next look at:

$\displaystyle \frac{\frac{\delta}{\delta x}(2xy-e^{-2y})-\frac{\delta}{\delta y}(y)}{y}=\frac{2y-1}{y}=2-\frac{1}{y}$

Since this depends only on $y$, we compute the integrating factor as follows:

$\displaystyle \mu(y)=e^{\int2-\frac{1}{y}\,dy}=e^{2y-\ln|y|}=\frac{e^{2y}}{y}$

We now multiply the ODE by $\mu(y)$ observing we are losing the trivial solution $y\equiv0$:

$\displaystyle \frac{e^{2y}}{y}\cdot y\,dx + \frac{e^{2y}}{y}(2xy-e^{-2y})\,dy=0$

$\displaystyle e^{2y}\,dx + \left(2xe^{2y}-\frac{1}{y} \right)\,dy=0$

We can now easily see that the equation is exact. Even though you asked only for the integrating factor, I will go ahead and solve the equation.

Since our equation is exact, we may state:

$\displaystyle \frac{\delta F}{\delta x}=e^{2y}$

Integrating with respect to $x$ we get:

$\displaystyle F(x,y)=\int e^{2y}\,dx+g(y)=xe^{2y}+g(y)$

Now, to determine $g(y)$, we will take the partial derivative with respect to $y$ of both sides of the above equation and substitute $\displaystyle 2xe^{2y}-\frac{1}{y}$ for $\displaystyle \frac{\delta F}{\delta y}$:

$\displaystyle 2xe^{2y}-\frac{1}{y}=2xe^{2y}+g'(y)$

$\displaystyle -\frac{1}{y}=g'(y)$

Hence, integrating, and choosing the constant of integration to be zero, we find:

$\displaystyle g(y)=-\ln|y|$

And so we have:

$\displaystyle F(x,y)=xe^{2y}-\ln|y|$

Thus, the solution to the ODE is given implicitly by:

$\displaystyle C=xe^{2y}-\ln|y|$
 
Another way (without using integrating factor): we can write the equation in the form $\dfrac{dx}{dy}+2x=\dfrac{e^{-2y}}{y}$ which is linear on the dependent variable $x=x(y)$. Now, and using a well-known theorem, the general solution of the equation $x'+p(y)x=q(y)$ is

$xe^{\int pdy}-\displaystyle\int qe^{\int pdy}\;dy=C$
In our case, $p=2,q=\dfrac{e^{-2y}}{y}$ so,
$xe^{2y}-\displaystyle\int \frac{e^{-2y}}{y}\;e^{2y}\;dy=C$

Equivalenly:

$xe^{2y}-\ln |y|=C$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top