Five, Phi and Pi in one integral = −5ϕπ

  • Context: MHB 
  • Thread starter Thread starter Tony1
  • Start date Start date
  • Tags Tags
    Integral Phi Pi
Click For Summary
SUMMARY

The integral $$I = \int_{0}^{\pi\over 2}{\ln(\sin^2 x)\over \sin(2x)}\cdot \sqrt[5]{\tan(x)}\mathrm dx$$ evaluates to $$-5\phi\pi$$, where $\phi$ represents the golden ratio. A participant in the discussion questioned the result, suggesting an alternative evaluation of $$I = -\frac{5 \pi}{\phi}$$. However, the consensus confirms that the original result is accurate, with the relationship $$\sin(\pi/10) = \frac{1}{2\phi}$$ supporting the conclusion.

PREREQUISITES
  • Understanding of integral calculus, specifically definite integrals.
  • Familiarity with logarithmic functions and their properties.
  • Knowledge of trigonometric identities, particularly involving sine and tangent.
  • Concept of the golden ratio ($\phi$) and its mathematical significance.
NEXT STEPS
  • Study advanced techniques in evaluating definite integrals involving logarithmic and trigonometric functions.
  • Explore the properties and applications of the golden ratio ($\phi$) in mathematical contexts.
  • Learn about the relationship between sine functions and their values at specific angles, such as $$\sin(\pi/10)$$.
  • Investigate the use of numerical methods for verifying integral evaluations in calculus.
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integral evaluations and the properties of the golden ratio.

Tony1
Messages
9
Reaction score
0
$$\int_{0}^{\pi\over 2}{\ln(\sin^2 x)\over \sin(2x)}\cdot \sqrt[5]{\tan(x)}\mathrm dx=-5\phi \pi$$

$\phi$ is the golden ratio

Make $u=\tan x$

$${1\over 2}\int_{0}^{\infty}u^{-{4\over 5}}\ln\left({1+u^2\over u^2}\right)\mathrm du$$

hmmm, too complicate to continue.
Any help, please. Thank you!
 
Last edited:
Physics news on Phys.org
Is there an error in the result? I'm getting

$$I = \int_{0}^{\pi\over 2}{\ln(\sin^2 x)\over \sin(2x)}\cdot \sqrt[5]{\tan(x)}\mathrm dx = -\frac{5 \pi}{\phi}$$.
 
Theia said:
Is there an error in the result? I'm getting

$$I = \int_{0}^{\pi\over 2}{\ln(\sin^2 x)\over \sin(2x)}\cdot \sqrt[5]{\tan(x)}\mathrm dx = -\frac{5 \pi}{\phi}$$.

Taking your substitution $$u = \tan x$$, one obtains

$$I = -\frac{1}{2}\int _0^{\infty}u^{-4/5}\ln \left( \frac{1+u^2}{u^2} \right) \mathrm d u$$.

Now taking $$\frac{1+u^2}{u^2} = q$$, the integral becomes

$$I = -\frac{1}{4}\int _1 ^{\infty} \ln q \ (q - 1)^{-11/10} \mathrm dq.$$

Let's then integrate by parts ($$ \mathrm d f = \ln q$$) and one obtains

$$I = -\frac{5}{2}\int _1 ^{\infty} q^{-1} \ (q - 1)^{-1/10} \mathrm dq.$$

One more substitution: $$1 - \dfrac{1}{q} = p$$ and one obtains

$$I = -\frac{5}{2}\int _0 ^1 p^{-1/10} \ (1 - p)^{-9/10} \mathrm dp.$$

By definition of the Beta function one reads this as

$$I =-\frac{5}{2} \beta \left( \frac{9}{10}, \frac{1}{10} \right) = -\frac{5}{2} \frac{\pi}{\sin \tfrac{\pi}{10}} = -\frac{5\pi}{\phi}$$.
 
Last edited:
Theia said:
Taking your substitution $$u = \tan x$$, one obtains

$$I = -\frac{1}{2}\int _0^{\infty}u^{-4/5}\ln \left( \frac{1+u^2}{u^2} \right) \mathrm d u$$.

Now taking $$\frac{1+u^2}{u^2} = q$$, the integral becomes

$$I = -\frac{1}{4}\int _1 ^{\infty} \ln q \ (q - 1)^{-11/10} \mathrm dq.$$

Let's then integrate by parts ($$ \mathrm d f = \ln q$$) and one obtains

$$I = -\frac{5}{2}\int _1 ^{\infty} q^{-1} \ (q - 1)^{-1/10} \mathrm dq.$$

One more substitution: $$1 - \dfrac{1}{q} = p$$ and one obtains

$$I = -\frac{5}{2}\int _0 ^1 p^{-1/10} \ (1 - p)^{-9/10} \mathrm dp.$$

By definition of the Beta function one reads this as

$$I =-\frac{5}{2} \beta \left( \frac{9}{10}, \frac{1}{10} \right) = -\frac{5}{2} \frac{\pi}{\sin \tfrac{\pi}{10}} = -\frac{5\pi}{\phi}$$.

Note $$\sin(\pi/10)={1\over 2\phi}$$

$$-{5\over 2}\cdot {\pi\over \sin(\pi/10)}=-5\pi\phi$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
9
Views
3K
  • · Replies 26 ·
Replies
26
Views
957