POTW Flat Modules and Intersection

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##M## be a flat module over a commutative ring ##A##. Suppose ##X_1## and ##X_2## are submodules of an ##A##-module ##X##. Prove that ##(X_1 \cap X_2) \otimes_A M = (X_1 \otimes_A M) \cap (X_2 \otimes_A M)## as submodules of ##X\otimes_A M##.
 
Physics news on Phys.org
There is a short exact sequence ##0 \to X_1 \cap X_2 \to X \to X/X_1 \oplus X/X_2 \to 0##. Tensoring with ##M## gives a short exact sequence $$0 \to (X_1 \cap X_2) \otimes_A M \to X \otimes_A M \to \frac{X\otimes_A M}{X_1 \otimes_A M} \oplus \frac{X \otimes_A M}{X_2 \otimes_A M}\to 0$$ The kernel of the third map is ##(X_1 \otimes_A M) \cap (X_2 \otimes_A M)## so indeed $$(X_1 \cap X_2) \otimes_A M = (X_1\otimes_A M) \cap (X_2 \otimes_A M)$$
 
The difference of the inclusion maps from the direct sum of two submodules into the ambient module, has kernel equal to the diagonal map from their intersection. Then tensoring with ##M## preserves direct sums, kernels, and cokernels, hence gives this result.
 
  • Like
Likes Greg Bernhardt

Similar threads

Back
Top