B Flattening Object with Computational Geometry

Click For Summary
A father-son team has made significant advancements in computational geometry by solving a complex problem involving the flattening of objects with infinite folds. Their work builds on principles of origami, showcasing the intersection of art and mathematics. The team’s findings have implications for various fields, including engineering and design. Their contributions highlight the innovative potential of combining mathematical theory with practical applications. This research exemplifies the ongoing relevance of mathematical exploration in solving real-world challenges.
Mathematics news on Phys.org
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
9K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K