Fluid dynamics of a cocktail shaker

Click For Summary
SUMMARY

The discussion centers on the fluid dynamics of cocktail shakers, specifically comparing the frothiness of drinks shaken with multiple normal-sized ice cubes versus a single large ice cube. The consensus among bartenders suggests that a single large cube results in greater frothiness, potentially due to longer shaking times or fewer localized shock waves that collapse bubbles. Participants speculate on factors such as pour dynamics and the effects of surface area on temperature and viscosity, emphasizing the need for controlled experiments to validate these claims.

PREREQUISITES
  • Understanding of fluid dynamics principles
  • Knowledge of cocktail preparation techniques
  • Familiarity with the effects of temperature and viscosity on liquids
  • Basic concepts of bubble formation and surfactant behavior
NEXT STEPS
  • Research the impact of ice size on dilution and temperature in cocktails
  • Explore the role of surface tension in bubble formation and stability
  • Investigate controlled experiments on frothiness in shaken beverages
  • Learn about the physics of mixing and shaking techniques in bartending
USEFUL FOR

Bartenders, mixologists, beverage scientists, and anyone interested in the science behind cocktail preparation and frothiness.

phinds
Science Advisor
Insights Author
Gold Member
Dearly Missed
Messages
19,378
Reaction score
15,612
My son today asked me for an analysis of a situation, which was described to him as being purely anecdotal but apparently a fairly widespread belief among bartenders, so possibly correct.

The description is that if you take the two metal halves of a cocktail shaker, with a normal compliment of liquid stuff and then add either:
(1) a bunch or normal sized ice cubes
(2) a single much larger ice cube
You get different degrees of "frothiness" in the resulting drink when shaken. My expectation was that the multiple cubes would lead to more frothiness but he said the consensus is that the single cube leads to more frothiness.

Now this is a very UN-controlled experiment. For one thing, he thinks that generally with a single cube, more shaking is done (longer time) in order to achieve the same degree of temperature/dilution but that's not definite.

My own explanations were that if indeed this is a valid description of results, there are two possible reasons:
(1) they do in fact shake for longer and it's just that longer shaking leads to more frothiness
(2) the smaller cubes bang together and create more localized shock waves that collapse some of the tiny bubbles and cause some of the gas to be reabsorbed than would be the case with far fewer shock waves of just one big cube hitting the ends of the shaker.

So ... anyone have any more enlightened take on what might be going on (again, assuming that the outcome is in fact correctly described) ?

Thanks,

Paul
 
Last edited:
Engineering news on Phys.org
Speculation -

Maybe its about the pour. Perhaps multiple cubes tend to filter out bubbles as the drink is poured into the glass, and a single large cube does not do that.
 
I wonder whether there is a Mythbusters episode with this question ...
 
  • Like
Likes   Reactions: phinds
One time bump.

Any other ideas?
 
phinds said:
My expectation was that the multiple cubes would lead to more frothiness
Sorry, I agree.
 
Is there a "strainer" on the shaker?
 
Bystander said:
Is there a "strainer" on the shaker?
Nope, just two metal cylinders with one end open and one end closed on each, with a flared angle. The smaller open end fits inside the larger open end while shaking.

shakers.jpg
 
This is a "mixture" and like all mixtures exhibits "surfactant" behaviors (the frothiness, or suspension of air among others); but, I'm at a loss to explain "single cube frothier" as anything other than
Grinkle said:
Maybe its about the pour. Perhaps multiple cubes tend to filter out bubbles as the drink is poured into the glass, and a single large cube does not do that.
 
Grinkle said:
Speculation -

Maybe its about the pour. Perhaps multiple cubes tend to filter out bubbles as the drink is poured into the glass, and a single large cube does not do that.
But the bubbles are CREATED by the shaking. They don't exist prior to the shaking.
 
  • #10
phinds said:
bubbles are CREATED by the shaking.
... but, after being suspended, the single cube does less to "break the suspension."
 
  • #11
Bystander said:
... but, after being suspended, the single cube does less to "break the suspension."
That's my explanation #2
 
  • #12
I'd wonder about final temperature and amount of dilution by the ice. Both will affect viscosity, and probably surface tension. If shaken for the same time, the higher surface area may cool the blend much more quickly than a single large piece.

For a real test, it would seem you might want the final temperature, concentration, and excess ice mass to be the same in both cases to eliminate these as possibilities.
 
  • #13
ChemAir said:
For a real test, it would seem you might want the final temperature, concentration, and excess ice mass to be the same in both cases to eliminate these as possibilities.
Yes. As I said, this was a very UNcontrolled experiment.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 25 ·
Replies
25
Views
13K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 27 ·
Replies
27
Views
17K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K