MHB For which n is the term an integer & Calculate the equivalence

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

Question 1: We consider $\frac{2n-1}{n+7}$. For which $n$ is this term an integer? I have done the following:

We set $n+7=m \Rightarrow n=m-7$.

Then we get $$\frac{2n-1}{n+7}=\frac{2(m-7)-1}{(m-7)+7}=\frac{2m-15}{m}$$ So $m$ has to be a divisor of $15$, i.e. $m\in \{1,3,5,15\}$, therefore $n\in \{-6, \ -4, \ -2, \ 8\}$.
Question 2: Calculate $12673^{37}\pmod 5$. I have done the following:

From Euler's theorem we have $x^4\equiv 1\pmod 5$.

Then we get \begin{align*}12673^{9\cdot 4+1}\pmod 5&\equiv \left (12673^{4}\right )^9\cdot 12673 \pmod 5\\ & \equiv 1^9\cdot 12673 \pmod 5\\ & \equiv 12673 \pmod 5\\ & \equiv \left (2534\cdot 5+3\right )\pmod 5\\ & \equiv 3\pmod 5\end{align*}
Is everything correct and complete? :unsure:
 
Mathematics news on Phys.org
Question 2 is correct.

In question 1 we need to take -1, -3, -5, -15 as additional values of m
 
kaliprasad said:
Question 2 is correct.

In question 1 we need to take -1, -3, -5, -15 as additional values of m

Ah yes! Except from that everything else is correct and compelete, right?
 
yes
 
kaliprasad said:
yes

Great! Thank you! ☺
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a ā€œconvenient notationā€ he referred to as a ā€œdelta functionā€ which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top