1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Force on a charge inside a hollow charged sphere

  1. Feb 26, 2007 #1

    mheslep

    User Avatar
    Gold Member

    1. The problem statement, all variables and given/known data
    What is the force on a point charge q1 contained inside a hollow conductive sphere (or fine grid) with charge q2 and radius R?


    2. Relevant equations
    Coulomb F=k q1q2/r^2
    Gauss Law/method of closed surface: Integral over closed surface of Enormal da = E times the area of the surface = Flux = must equal the enclosed charge / eps0.
    F=qE

    3. The attempt at a solution

    Am aware of familiar prediction that an _empty_ hollow sphere has no internal E field, which follows from applying gauss's law to any virtual surface internal to the sphere with no enclosed charge, therefore E must be zero everywhere. In this case w/ contained q1 there is some field. However, applying gauss's closed surface again seams to give just the solution for E from a point charge q: E=kq1/r^2 (r distance from q1) only, with no E contribution from the surrounding sphere. Thus no force on q1??? Ive done some computer sim. (2D only) by surrounding a pt charge w/ 2 dozen like pt charges arranged in a circle and then doing N - body Coulomb - there's plenty of resulting force on the internal charge excepting the center of the circle.

    A little help please?

    Falstaff
     
  2. jcsd
  3. Feb 26, 2007 #2

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    I admire your resourcefulness at trying to simulate the situation with discrete point charges. If you follow that route then you should be able to show that as the number of point charges gets larger and larger then the interior force gets smaller and smaller. In the limit of a continuous distribution it will go to zero. Really!
     
  4. Feb 26, 2007 #3

    mheslep

    User Avatar
    Gold Member

    Yes with an _empty_ interior you don't need many circular charges to see the E field approaching zero. With an internal charge, though, the E field can not be zero everywhere. Gauss's law: I can close a surface around a charge, there must be non zero E. For that matter, let the internal pt charge grow a bit to the point where it becomes a smaller sphere so that you then have a concentric sphere capacitor. In that case I know the E between the inner and outer spheres - some ~ constant radial E.
     
    Last edited: Feb 26, 2007
  5. Feb 26, 2007 #4

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    The internal charge doesn't produce a force on itself. Or do I misunderstand you?
     
  6. Feb 26, 2007 #5

    mheslep

    User Avatar
    Gold Member

    Ah, ok. You're stating there is an E field but only due to the internal charge - a normal pt charge radial E field w/ no contribution from the surrounding sphere, thus no force? Makes sense. What about the concentric spheres case then. Isn't that an example of the same thing?
     
  7. Feb 26, 2007 #6

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Exactly. But what about the concentric spheres case? I don't quite get the picture?
     
  8. Feb 26, 2007 #7

    mheslep

    User Avatar
    Gold Member

    My point: Isnt the concentric spheres case merely an a specific instance of the general case of a charge contained inside a sphere? Ah, (again). Im thinking now that yes it is, but again as before there is no net force on the smaller sphere.

    Bottom line is I was trying to tinker w/ the Paul Trap concept and use all positive rotating poles instead of the rotating dipole. Works great in the 2D sim, Im containing 100kev ions no problem.
     
  9. Feb 26, 2007 #8

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Ah, you are editing your posts! Sure there is E field between the spheres, hence capacitance, but still no force on the internal sphere.
     
  10. Feb 26, 2007 #9

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Wow, Paul Trap! Guess I'd better look that one up.
     
  11. Feb 26, 2007 #10

    mheslep

    User Avatar
    Gold Member

    Last edited: Feb 26, 2007
  12. Feb 26, 2007 #11

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Thanks! So this isn't just pure theory.
     
  13. Feb 26, 2007 #12

    mheslep

    User Avatar
    Gold Member

    Paul Traps have been around for some years apparently. Its ability to hold an ion I believe is the basis for some of our best atomic measurements. I was curious about using something like it to confine at higher densities and energies. The trick is converting the rotating dipole to all positive poles which seems to generate a significant virtual potential well for my 2D sim.
     
  14. Feb 27, 2007 #13

    Meir Achuz

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    The charge q2 on the outer conducting sphere does not affect the field inside the conductor, so the force on q1 is the same as it would be for a grounded conductor. Use an image charge outside the sphere to solve the problem.
     
  15. Feb 27, 2007 #14

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Good point. If the internal charge can cause the sphere charge to rearrange so it's no longer uniform, you do get internal field. And need to use the image concept to compute the force.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Force on a charge inside a hollow charged sphere
Loading...