Ford Nucleon -- Fission Powered Car Calculation

  • Thread starter Thread starter ninne
  • Start date Start date
AI Thread Summary
To accelerate a 1100 kg car from 0 to 25 km/h, approximately 8.886 × 10^-7 grams of uranium-235 are required. The calculation begins by determining the car's kinetic energy, which is about 26,459 J. Considering the nuclear reactor's efficiency of 30%, the total energy needed is approximately 88,197 J. This energy corresponds to about 2.271 × 10^15 fissions of uranium-235. The conversion from fissions to grams is completed using Avogadro’s number and the molar mass of U-235.
ninne
Messages
2
Reaction score
1
New user has been reminded to always show their work on schoolwork problems.
Homework Statement
1. In 1958, the Ford Nucleon was launched, a car powered by nuclear energy. It had a small reactor onboard. Assume the car had a mass of 1100 kg and that the reaction used to release energy in the reactor was the following:

U-235 → U-236 → Sr-95 + Xe-139 + 2n

How many grams of uranium-235 are needed for the car to accelerate from 0 km/h to 25 km/h? Assume the nuclear reactor has an efficiency of 30%.
Relevant Equations
E = mc^2
Jr
 
Physics news on Phys.org
Please show your attempt to solve the problem.
 
We are asked to calculate how many grams of uranium-235 are required to accelerate a 1100 kg car from 0 to 25 km/h, assuming:

  • The nuclear reactor uses the fission of uranium-235:
    U-235 + n → U-236* → Sr-95 + Xe-139 + 2n
  • The efficiency of the nuclear engine is 30%
  • The energy released per fission is:
    E_fission = 3.885 × 10^-11J


v = 25 km/h ÷ 3.6 = 6.944 m/s


2. Calculate the car’s kinetic energy


E_kin = (1/2) * m * v²


E_kin = 0.5 * 1100 kg * (6.944 m/s)² ≈ 26,459 J


3. Account for reactor efficiency


Only 30% of the nuclear energy becomes kinetic energy:


E_needed = E_kin ÷ 0.30 = 26,459 J ÷ 0.30 ≈ 88,197 J





4. Calculate number of fissions required


Each fission releases 3.885 × 10⁻¹¹ J:


N = 88,197 J ÷ 3.885 × 10⁻¹¹ J ≈ 2.271 × 10¹⁵ fissions


5. Convert number of fissions to grams of U-235


First, convert fissions to moles using Avogadro’s number:


n = 2.271 × 10¹⁵ ÷ 6.022 × 10²³ ≈ 3.772 × 10⁻⁹ mol


Then, convert moles to grams using molar mass of U-235 (235 g/mol):


m = 3.772 × 10⁻⁹ mol × 235 g/mol ≈ 8.886 × 10⁻⁷ g
 
  • Like
Likes renormalize
ninne said:
m = 3.772 × 10⁻⁹ mol × 235 g/mol ≈ 8.886 × 10⁻⁷ g
Looks good to me.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top