Form of radial velocity along null geodesic under the Kerr metric

  • Thread starter Thread starter Bertin
  • Start date Start date
  • Tags Tags
    Kerr metric
AI Thread Summary
The discussion focuses on deriving the expression for radial velocity along a null geodesic under the Kerr metric, utilizing Killing vectors k and l. It establishes that these vectors lead to conserved quantities E and L, expressed in terms of derivatives with respect to the affine parameter. The participant encounters difficulties in simplifying the resulting expression for \dot{r}^2, noting it lacks a crucial term involving \frac{\Sigma^2}{r^4}E^2. They suspect a potential oversight in simplification or derivation despite consistent results from Mathematica. Assistance is requested to clarify the derivation process for the desired expression.
Bertin
Messages
12
Reaction score
6
Homework Statement
Given the affine parameter [itex]\lambda[/itex] of a null geodesic on the equator ([itex]\theta = \pi/2[/itex]), prove that that the [itex]r[/itex] coordinate satisfies the following equation:
$$\left(\frac{dr}{d\lambda}\right)^2 = \frac{\Sigma^2}{\rho^4}(E - L W_-(r))(E - L W_+(r))$$
for some [itex]W(r)[/itex] that might depend on [itex]E,L[/itex] and [itex]r[/itex], and for [itex]E, L[/itex] constants of motion.
Relevant Equations
The Kerr metric, in the Boyer-Lindquist coordinates and on the equator, reads
$$ds^2 = -(1 - \frac{R}{r})dt^2 - \frac{R}{r}a (dtd\phi + d\phi dt) + \frac{r^2}{r^2 + a^2 - R r} dr^2 + \frac{\Sigma^2}{r^2} d\phi^2$$
for [itex]\Sigma^2 = r^4 + a^2 r^2 + R r a[/itex].
By the symmetries of the metric, k = \partial_t and l = \partial_\phi are Killing vectors. Since they are Killing vectors, they satisfy k_\mu \dot{x}^\mu = E and l_\mu \dot{x}^\mu = L, for the same constants appearing in the expression we must prove, and where the dot means the derivative w.r.t. to the affine parameter. Hence it follows that
$$E = -(1 - \frac{R}{r})\dot{t} - \frac{R}{r}a\dot{\phi}$$
$$L = -\frac{R}{r}a\dot{t} + \frac{\Sigma^2}{r^2}\dot{\phi}$$.
Moreover, since x(\lambda) is a null geodesic, we have that \dot{x}_\mu\dot{x}^\mu = 0, whence
$$ 0 = \frac{r^2}{r^2 + a^2 - R r}\dot{r}^2 - (1 - \frac{R}{r})\dot{t}^2 - 2\frac{R}{r}a\dot{t}\dot{\phi} + \frac{\Sigma^2}{r^2}\dot{\phi}^2$$

We can then solve the equations of E and L for \dot{t} and \dot{\phi} to later replace those values inside last equation. Nevertheless, this leads to a very messy expression for \dot{r}^2 that does not look that the one we must prove, first and foremost because the resulting expression doesn't seem to include any \frac{\Sigma^2}{r^4}E^2 (unless both Mathematica and I are missing a possible simplification, which could be the case), so I probably have done some mistake (not calculatory, though, because my results agree with Mathematica) or I am missing something.

I would appreciate if someone could show me how do we derive above expression. Thank you in advance.
 
Last edited:
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top