MHB Formula for a geometric series with variable common ratio

Click For Summary
The discussion focuses on deriving a formula for the summation of a geometric series defined as $$\sum_{k=2}^{n}a^{n-k}$$ where a is a positive constant greater than 1. The initial attempt to find the formula resulted in an incorrect expression, leading to confusion about the correct approach. The correct formula for the summation is identified as $$S_{n-2}=\frac{a^{n-1}-1}{a-1}$$, which aligns with the properties of geometric series. A step-by-step breakdown illustrates how to manipulate the series to arrive at the correct formula. The conversation emphasizes the importance of careful application of geometric series principles in deriving accurate results.
ATroelstein
Messages
15
Reaction score
0
I have the following summation where a is a positive constant and can be > 1

$$
\sum_{k=2}^{n}a^{n-k}
$$

I am trying to find a general formula for this summation, which turns out to be a geometric series with a as the common ratio. I have worked out the following:

$$
\sum_{k=2}^{n}a^{n-k} = \sum_{k=0}^{n-2}a^{k}
$$$$
a^{0} + a^{1} + a^{2} + ... + a^{n-3} + a^{n-2}
$$Plugging this information into the geometric series summation formula where the common ratio = a, the first term is 1 and the number of terms is n-2, I get:

$$
S_{n-2} = 1 * (\frac{1-a^{n-2}}{1-a})
$$

After testing this formula few times, I found that it's always slightly off. I'm wondering where I went wrong when trying to determine the formula. Thanks.
 
Physics news on Phys.org
Hi ATroelstein! :)

The proper formula is: $S_{n-2} = 1 \cdot \frac {1-a^{n-1}}{1-a}$

See for instance here.
 
You want:

$\displaystyle S_{n-2}=\frac{a^{n-1}-1}{a-1}$

Consider:

$\displaystyle S_{n-2}=\sum_{k=0}^{n-2}a^k$

Multiply through by $a$:

$\displaystyle aS_{n-2}=\sum_{k=0}^{n-2}a^{k+1}=\sum_{k=0}^{n-2}a^k-a^0+a^{n-1}=S_{n-2}+a^{n-1}-1$

$\displaystyle aS_{n-2}-S_{n-2}=a^{n-1}-1$

$\displaystyle (a-1)S_{n-2}=a^{n-1}-1$

$\displaystyle S_{n-2}=\frac{a^{n-1}-1}{a-1}$
 
Last edited:
ATroelstein said:
I have the following summation where a is a positive constant and can be > 1

$$
\sum_{k=2}^{n}a^{n-k}
$$

I am trying to find a general formula for this summation, which turns out to be a geometric series with a as the common ratio. I have worked out the following:

$$
\sum_{k=2}^{n}a^{n-k} = \sum_{k=0}^{n-2}a^{k}
$$$$
a^{0} + a^{1} + a^{2} + ... + a^{n-3} + a^{n-2}
$$Plugging this information into the geometric series summation formula where the common ratio = a, the first term is 1 and the number of terms is n-2, I get:

$$
S_{n-2} = 1 * (\frac{1-a^{n-2}}{1-a})
$$

After testing this formula few times, I found that it's always slightly off. I'm wondering where I went wrong when trying to determine the formula. Thanks.

May be that the best first step is to set... $\displaystyle \sum_{k=2}^{n} a^{n-k} = a^{n}\ \sum_{k=2}^{n} \frac{1}{a^{k}}$ (1)

Kind regards

$\chi$ $\sigma$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K