I Formula for credit card balance as a function of payments

AI Thread Summary
The discussion focuses on finding a formula to calculate the time required to pay off credit card debt based on monthly payments and interest rates. The basic formula for an annuity is referenced, where the present value (PV) represents the loan balance, P is the monthly payment, r is the interest rate, and n is the number of periods. To determine n, the formula n = log(P / (P - rPV)) / log(1 + r) is suggested, although it may require iteration for practical use. The complexity increases when solving for the interest rate r, especially for higher-order polynomials. Understanding these calculations is essential for effective debt management.
barryj
Messages
856
Reaction score
51
I have been trying to find the financial formula that will give the balance of a credit card debt as a function of time. Example, at 18% interest, if I pay $150 a month how long will it take me to pay off my debt. When I google, I get pointers to Excello functions. I want to know the exact formula.
 
Mathematics news on Phys.org
It all comes from the basic formula for an annuity

annuity_formula.svg

In your case the PV is the loan balance, P the payment, r the rate and n the number of periods - so you need to solve for n, so it’s easier to just iterate
 
BWV said:
It all comes from the basic formula for an annuity

annuity_formula.svg

In your case the PV is the loan balance, P the payment, r the rate and n the number of periods - so you need to solve for n, so it’s easier to just iterate

Taking logs is hardly difficult. <br /> n = \left.\log\left( \frac{P}{P - rPV}\right)\right/ \log(1 + r). Having made \lfloor n \rfloor payments, you will have one further payment of less than P to make.

Solving for r is the difficult one, as this is a polynomial of order n + 1 which cannot be solved analytically for n \geq 4 (although r = 0 is always a solution).
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top