I Formula for credit card balance as a function of payments

AI Thread Summary
The discussion focuses on finding a formula to calculate the time required to pay off credit card debt based on monthly payments and interest rates. The basic formula for an annuity is referenced, where the present value (PV) represents the loan balance, P is the monthly payment, r is the interest rate, and n is the number of periods. To determine n, the formula n = log(P / (P - rPV)) / log(1 + r) is suggested, although it may require iteration for practical use. The complexity increases when solving for the interest rate r, especially for higher-order polynomials. Understanding these calculations is essential for effective debt management.
barryj
Messages
856
Reaction score
51
I have been trying to find the financial formula that will give the balance of a credit card debt as a function of time. Example, at 18% interest, if I pay $150 a month how long will it take me to pay off my debt. When I google, I get pointers to Excello functions. I want to know the exact formula.
 
Mathematics news on Phys.org
It all comes from the basic formula for an annuity

annuity_formula.svg

In your case the PV is the loan balance, P the payment, r the rate and n the number of periods - so you need to solve for n, so it’s easier to just iterate
 
BWV said:
It all comes from the basic formula for an annuity

annuity_formula.svg

In your case the PV is the loan balance, P the payment, r the rate and n the number of periods - so you need to solve for n, so it’s easier to just iterate

Taking logs is hardly difficult. <br /> n = \left.\log\left( \frac{P}{P - rPV}\right)\right/ \log(1 + r). Having made \lfloor n \rfloor payments, you will have one further payment of less than P to make.

Solving for r is the difficult one, as this is a polynomial of order n + 1 which cannot be solved analytically for n \geq 4 (although r = 0 is always a solution).
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top