Formula for sum of digits of a number

Click For Summary
The discussion focuses on finding a formula for calculating the sum of the digits of a number, particularly for 2-digit and 3-digit numbers. A suggested approach is to use the DIV\MOD algorithm, which allows for digit extraction in any base, including base 10. The method involves repeatedly applying modulo and division operations to isolate each digit until the number is reduced to zero. A user also shares a derived formula that combines terms to simplify the calculation of the digit sum for whole numbers. The conversation emphasizes the desire for a manual method rather than computer-based solutions.
greg9381
Messages
5
Reaction score
0
Any ideas on this? I googled it and got only answers inolving Excel, C++, etc...
A formula for finding the digit sum of a 2-digit number, or only a 3-digit number, would also be interesting.

I thought I had a start with this: For a 2-digit number xy, the sum of the digits = (\frac{x}{10})\lfloor + something. But I don't know how to isolate y.
 
Physics news on Phys.org
greg9381 said:
Any ideas on this? I googled it and got only answers inolving Excel, C++, etc...
A formula for finding the digit sum of a 2-digit number, or only a 3-digit number, would also be interesting.

I thought I had a start with this: For a 2-digit number xy, the sum of the digits = (\frac{x}{10})\lfloor + something. But I don't know how to isolate y.

Hey greg9381 and welcome to the forums.

The best way to answer this for any base is to use the DIV\MOD algorithm. This will generate each digit for each base-position for any base and then you can simply sum all the base-position components and get an answer.

You can apply this say for a number in base 2, base 16, or base 10. From the sounds of it, you want to apply this algorithm to base 10. Also I'm going to assume you have a whole number: if you don't just remove the remainder (term after the decimal point) and treat this result as a normal whole number.

Take a look at this:

http://www.cut-the-knot.org/recurrence/conversion.shtml
 
Well, I'm not very advanced (AB calc in high school) so I can't completely understand the article, but it seems to be a way to find the digit sum using a computer? To clarify, I'm wondering if it's possible to have a formula that can be done with pencil and paper, not computers.
 
greg9381 said:
Well, I'm not very advanced (AB calc in high school) so I can't completely understand the article, but it seems to be a way to find the digit sum using a computer? To clarify, I'm wondering if it's possible to have a formula that can be done with pencil and paper, not computers.

The basic idea is very simple and goes a little something like this:

Take a number n. Do the following until you get n = 0.

Set i = 1
Calculate a(i) = n MOD 10. Let n = n - a(i). n = n / 10.
If n = 0 then we are done. If not then increase i by 1 and go back to the previous step.

Then if you want the sum simply add up all the a(i)'s and that will give you your sum.

This is for base-10, but if you want to do it for any base then just replace 10 with the base you are working with.

Quick example. Let n = 231.

a(1) = 231 MOD 10 = 1. 231 - 1 = 230. 230/10 = 23 which is not zero so i = 2.
a(2) = 23 MOD 10 = 3. 23 - 3 = 20. 20/10 = 2 which is not zero so i = 3.
a(3) = 2 MOD 10 = 2, 2-2 = 0, 0/10 = 0 so we stop.

Now add up all a(i)'s to get a(1) + a(2) +a(3) = 1 + 3 + 2 = 5 which is what we expect.
 
I got it.

About thirty minutes of non-continuous free time and a half sheet of paper gave me this:
For any whole number "x":
1 digit: x
2 digits: (\left\lfloor\frac{x}{10}\right\rfloor) + (x -10(\left\lfloor\frac{x}{10}\right\rfloor))
...

After awhile, I realized I could combine like terms, and this is what I got:

x - 9(\left\lfloor\frac{x}{10}\right\rfloor) - 9(\left\lfloor\frac{x}{100}\right\rfloor) - 9(\left\lfloor\frac{x}{1000}\right\rfloor) - 9(\left\lfloor\frac{x}{10000}\right\rfloor) ...

For powers of ten where \frac{x}{10^{n}} is less than 1, those items become 0.

To use this formula quickly, you may wish to use decimals and do the floor function in your head.

i.e.: Find the sum of the digits of 345854:
345854 - 9(34585) - 9(3458) - 9(345) - 9(34) - 9(3) = 29
 
Perfect! So it could be expressed as this:
latex.codecogs.com/gif.latex?x%20-%209\sum_{n=1}^{\infty}{\left%20\lfloor%20\frac{x}{10^n}%20\right%20\rfloor}
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 3 ·
Replies
3
Views
779
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K