I saw someone discussing divisibility rules in another thread and would thought I would make a note that the divisibility rule of 9 of summing the digits to see if you end up with 9 is really a trick of the counting base you are using (base 10).(adsbygoogle = window.adsbygoogle || []).push({});

In general, this divisibility rule applies to all bases but with different numbers in each base.

Whatever the last symbol of the base is, if the digits sum to that number in that base, it is divisible by the integer represented by the last symbol.

For instance,

in base 13, the number that works is 12,

AND

the trick also works for all of these numbers, as they are factors of 12:

6, 4, 3, 2

Adding digits in different bases can feel tricky at first because they have to be interpreted in the same base as you are using.

For instance if you come across "B5" (B in base 13 = 11 in base 10)

you should turn this into "13",

and then summing this becomes 4

this tells you B5(a base 13 representation) is divisible by 4

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Divisibility rules using sum of digits

Loading...

Similar Threads for Divisibility rules using | Date |
---|---|

I Division Rings & Ring Homomorphisms ... A&W Corollary 2.4 .. | Mar 13, 2018 |

A Inversion of Division of Bessel Functions in Laplace Domain? | Feb 15, 2017 |

I A p-primary group G that is not divisible -- Show that <y> is pure in G. | Feb 9, 2017 |

I N-Dimensional Real Division Algebras | Nov 22, 2016 |

Rule of division by 23. | Dec 22, 2008 |

**Physics Forums - The Fusion of Science and Community**