I Formula for the propagation of complex errors

AI Thread Summary
To propagate errors for complex measurements, the formula f(x, y) = f(x, y) ± √{(∂f/∂x * Δx)² + (∂f/∂y * Δy)²} is used, where x and y are expressed in polar coordinates as x + iy = Re^(iθ). An example function is f(x, y) = x + y², which yields a result of 7 ± 0.41 in the non-complex case. For complex numbers, the result should be expressed as (-18.0 ± 4.0) - (10.5 ± 1.9)i, with R = √(x² + y²) and θ = arctan(y/x). The variance of the amplitude in relation to the variances of the real and imaginary components may follow a Rayleigh distribution if variances are equal, but the generalization for unequal variances remains uncertain. Understanding these concepts is crucial for accurate error propagation in complex measurements.
accdd
Messages
95
Reaction score
20
If I have 2 measurements ##x = (3.0 ± 0.1), y = (-2.0 ± 0.1)## and want to calculate how the error propagates when calculating a function from those values this formula should be used: ##f(x, y) = f(x, y) ± \sqrt {(\frac{\partial f}{\partial x}*\Delta x)^2+(\frac{\partial f}{\partial y}*\Delta y)^2}##
What is the formula for calculating error propagation if x and y are complex (##x = (3 ± 0.1) + (9.5 ± 0.4)ⅈ, y = (2 ± 0.1) - (5 ± 0.4)ⅈ##)?
 
Mathematics news on Phys.org
Change to polar coordinates.
 
Can you give me an example. Suppose the function is: ##f(x, y) = x + y^2##
In the non-complex case, with the data given in the previous post, I would proceed as follows:
##f(x, y) = x + y^2 = (3+(-2)^2) \pm \sqrt{0.1^2+(2*(-2) *0.1)^2}= 7\pm \sqrt{0.01+0.16}=7\pm0.41##
How can I change to polar coordinates to get the result in case of complex numbers?
The result should be: ##(-18.0 ± 4.0) - (10.5 ± 1.9)ⅈ## (Measurement jl)
 
x+iy\equiv Re^{i\theta}where R=\sqrt{x^{2}+y^{2}} and \theta =\arctan(\frac{y}{x}). This is the easiest representation for complex multiplication (you multiply the argumets and add the angles). Complex addition is easiest in the cartesian notation.
 
I got stuck, not able to get the result. Can someone show me how to do it please?
 
Svein said:
Change to polar coordinates.
After that, you'd have to know the variance of the amplitude as a function of the variances of the real and imaginary components. If they had the same variance, I think you'd have a Rayleigh distribution. I'm not sure how that generalizes to the case of unequal variances. Does that distribution have a special name?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top