Careful said:
See my comment above; perhaps, this question is far more difficult than most people imagine it to be.
I certainly agree. I do not expect something simple. I appreciate that as least your not trying to deny it :) This is whay I dislike when sometimes people try to pretend that some hard problems doesn't exist, or doesn't belong to science.
Careful said:
But let me tell you the following: what would you understand by a constraining principle ? I mean, what do these unified gauge group theoretical approaches such as E_8 explain ?
As far as I know these things, most people speaking of that use a completely different approach than me, and seems to be guided by some sort of mathematical simplicity or beauty that lacks physical justification. So to the extent I'm aware of I don't think they explain anything (or well, at least not NEAR as much as one would want). Either that, or I'm too stupid to get it.
But the constructing principle I expect is essentially in the form of an rational inference; which necessarily takes place within an observer. In this sense I think that there is a way to consider all interactions (not just gravity like verlinde suggests) as entropic in nature, BUT "entropic" in terms not of classical statistics but in terms of a new, not yet well defined, inference, where quantum logic naturally enters the picture, not as assuptions but as consequences of non-commutative structures, which in turn developes because it's the only way for systems to survive and be stable. So the selection principle is not deductive style consistency constraints, but softer evolutionary style rationality constraints.
To associate to your computer vs human issue, computers are information processing agents that follow a deductive type deterministic logic. Humans are not. This is why a comptuer can be superior of a human in specific, well defined tasks, such as computing decimals of pi :) while the human brain is way superior in creative and fuzzy tasks. This is just in line with I suggest as well. There is simply not much survival value in competing decimals pi at high speed.
Similarly I envision that there is actually a survival value in an information processing agent (subatomic matter) to implement quantum logic.
I believe this is possible, but it is complicate and the descrption of this properly, say in a paper to be publish, (which I also have in mind sometime in the future, if I can do this) unfortunately couples with several other problems (such as origina of complexity, which I consider to relate to the origina of gravit as well) that has to be solved in parallell, probably iteratively. There is simply no way to explain on part, while holding the other part fixed in the mainstream world. The new compelte picture need to be evolved together. I've thought and sketched quite a lot about this.
So while I see that this is a very complex task; it's somehow "in the end" what I expect out of any potential research program. If I at least can see it coming, or seeing that it's possible, then the program is interesting for me. Some programs OTOH, that doesn't even phrase, acknowledge, or even explicitly ignores this are not something that I find worty the time.
So what I like about your thinking is that even if I don't know your full picture, seem to have put some good thought into it and you don't seem to try to deny the issues. That's what I find to be the stronger points, making me curious too learn more.
/Fredrik