High School Four Velocity Sign of Time: \dot t>0?

Click For Summary
The discussion centers on the concept of four velocity in relation to time-like and light-like paths in spacetime. It clarifies that four velocity is not defined for light-like paths, but other four vectors, such as four momentum, can be defined along null curves. For massive particles, proper time can be used to ensure that four-velocity is normalized with a positive time component. The conversation emphasizes that while future-pointing vectors typically have a positive time component, it is theoretically possible to define a time coordinate that increases towards the past. Ultimately, it is common practice to choose a time coordinate such that the four velocity component is positive to represent motion into the future.
Onyx
Messages
141
Reaction score
4
TL;DR
Is it generally the case even with light like paths that ##\dot t>0##?
Is it generally the case even with light like paths that ##\dot t>0##?
 
Physics news on Phys.org
A four velocity is not defined for a light like path.
 
Up to you, really. It is true that all future-pointing vectors will have the same sign in their time component, assuming your time coordinate is reasonably named and the spacetime has a global distinction between past and future. But there's nothing to stop you having your time coordinate increase towards the past, in which case all future-pointing four vectors would have negative time components.

As @Sagittarius A-Star points out, four velocity is not defined for null paths. However, you can define other four vectors tangent to null curves, such as the four momentum.
 
Last edited:
  • Like
Likes topsquark and PeterDonis
It's convenient to have the world-line parameter defined such that ##\dot{t}>0##. For massive particles you have time-like worldlines, and you can choose the proper time, ##\tau## as a natural world-line parameter. Then the four-velocity is "normalized": ##u_{\mu} u^{\mu}=c^2##.

For massless particles ("naive photons") of course you cannot choose proper time, because it's not defined but you can choose any affine parameter you like. Then you have ##\dot{x}^{\mu} \dot{x}_{\mu}=0##, i.e., light-like worldlines.

In both cases it is natural to choose ##\dot{t}>0##, where ##t## is the time-like coordinate since then with increasing world-line parameter you describe a motion into the future.
 
A good one to everyone. My previous post on this subject here on the forum was a fiasco. I’d like to apologize to everyone who did their best to comment and got ignored by me. In defence, I could tell you I had really little time to spend on discussion, and just overlooked the explanations that seemed irrelevant (why they seemed irrelevant, I will tell you at the end of this). Before we get to the point, I will kindly ask you to comment having considered this text carefully, because...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 76 ·
3
Replies
76
Views
3K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 27 ·
Replies
27
Views
7K