Fourier series for a series of functions

EnriqueOrtizMartinez
Messages
2
Reaction score
0
Homework Statement
From equations 1) or 2) use the appropriate values of ## \theta ## usually ## (0 ,\frac{\pi }{2},\pi )## , to get to the indicated equation.
Relevant Equations
1)

## f(\theta )=e^{b\theta }(-\pi <\theta <\pi ) \quad | \quad\frac{sinh(b\pi )}{\pi }\sum_{-\infty }^{\infty }\frac{(-1)^{n}}{b-in}e^{in\theta } ##


2)

##f(\theta )=e^{b\theta }(0<\theta <2\pi )\quad | \quad\frac{e^{2\pi b}-1}{2\pi }\sum_{-\infty }^{\infty }\frac{e^{in\theta }}{b-in}##


Indicated equation:

##\sum_{1 }^{\infty }\frac{(-1)^{n}}{n^{2}+b^{2}}=\frac{\pi }{2b}csch(b\pi )-\frac{1}{2b^{2}}##
## ##

Well I start with equation 1): ## e^{b\theta }=\frac{sinh(b\pi )}{\pi }\sum_{-\infty }^{\infty }\frac{(-1)^{n}}{b-in}e^{in\theta } ##

If ## \theta =0 ##
##e^{b(0)}=\frac{sinh(b\pi )}{\pi }\sum_{-\infty }^{\infty }\frac{(-1)^{n}}{b-in}e^{in(0) }##
##1=\frac{sinh(b\pi )}{\pi }\sum_{-\infty }^{\infty }\frac{(-1)^{n}}{b-in} ##
Using the conjugate of the complex:
##1=\frac{sinh(b\pi )}{\pi }\sum_{-\infty }^{\infty }\frac{(-1)^{n}}{b-in}\frac{b+in}{b+in} ##
## 1=\frac{sinh(b\pi )}{\pi }\sum_{-\infty }^{\infty }(-1)^{n}\frac{b+in}{b^{2}+n^{2}}##
## \pi csch(b\pi )=\sum_{-\infty }^{\infty }(-1)^{n}\frac{b+in}{b^{2}+n^{2}}##Up to now I have only arrived, I do not know if it is for equation 1 to arrive at the result or for equation 2, another doubt that I have is that the summations of equations 1) and 2) tend to ##(-\infty ,\infty ) ## and the result of the summation tends to ## (1,\infty )## , as I do so that the sum of ## (-\infty ,\infty )## tend a ## (1,\infty )## ,my idea was to see if the functions were even or odd but since both are exponential they are not odd or even, they can help me with my problem in advance thanks.
 

Attachments

  • 2.-Fourier.png
    2.-Fourier.png
    7.8 KB · Views: 374
Physics news on Phys.org
The terms for n &gt; 0 and -n are complex conjugates. This reordering of terms is justifiable if you treat the summation as <br /> \lim_{N \to \infty} \sum_{n = -N}^{N} (-1)^n \frac{b + in}{b^2 + n^2}.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K