Fourier Transform limits problem

Click For Summary

Discussion Overview

The discussion revolves around finding the Fourier Transform of the function $e^{-a|t|}\cos(bt)$. Participants explore different approaches to simplify the integral involved in the transformation, particularly using Euler's formula and considering the real and imaginary parts of the resulting expressions.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant suggests using the representation $Cos(bt) = Re\{e^{ibt}\}$ to simplify the Fourier Transform, leading to an integral that includes $e^{-a|t|}$.
  • Another participant emphasizes the need to split the integral based on the definition of $|t|$, which changes at $t=0$.
  • A participant expresses uncertainty about whether taking the real part with respect to $b$ would yield the same result as the Fourier Cosine Transform and questions the relationship to the Fourier Sine Transform.
  • One participant inquires if using Euler's form for $Cos(bt)$ allows for extracting the real part with respect to $b$ while leaving the complex parts with respect to $\omega$.
  • A later reply acknowledges the basic strategy but points out that some details may require improvement, suggesting a clearer breakdown of the integral into two parts based on the sign of $t$.

Areas of Agreement / Disagreement

Participants do not reach consensus on the best approach to take for the Fourier Transform, with multiple competing views on how to handle the integral and the roles of the real and imaginary parts.

Contextual Notes

Participants express uncertainty about the implications of their manipulations, particularly regarding the convergence of integrals and the treatment of the limits as $t$ approaches infinity.

ognik
Messages
626
Reaction score
2
Find the Fourier Transform of $ e^{-a|t|}Cosbt $

I'd like to simplify this using $Cosbt = Re\left\{e^{ibt}\right\}$

$\therefore \hat{f}(\omega) = Re\left\{ \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{\left(-a+ib+iw\right)|t|} \,dt \right\} = Re\left\{ \frac{1}{\sqrt{2\pi}} \frac{1}{-a+ib+iw} e^{-a|t|}.e^{i(b+\omega)|t|}|^\infty_{-\infty} \right\}$

I think I can argue that the $e^{-a|t|}$ term dominates the $e^{i}$ term which is bounded. BUT the lower limit will make
$e^{-a|t|}$ infinite... is there a better way of approaching this FT?
 
Physics news on Phys.org
You should recall that
$$|t|=\begin{cases}\phantom{-}t,\; t\ge 0 \\ -t,\; t<0\end{cases}.$$
Then split up your integral into two pieces depending on where your integrand changes.
 
Ackbach said:
You should recall that
$$|t|=\begin{cases}\phantom{-}t,\; t\ge 0 \\ -t,\; t<0\end{cases}.$$
Thanks Ackbach and yes I should!

I'd appreciate if you'd please check the rest ... and sorry about the edits if we cross over.

What I did below seems wrong on reflection, I think I should take the real part only w.r.t. b - if that is possible?

If I did that, would the real part w.r.t. $\omega$ be the same as the Fourier Cosine Transform? And would the Fourier Sine Transform be just Imaginary part of that exponential Transform?

$$\hat{f}(\omega)= \frac{1}{\sqrt{2\pi}} Re\left\{ \int_{-\infty}^{0} e^{at}e^{eibt}e^{i\omega t} \,dt +
\int_{0}^{\infty} e^{at}e^{eibt}e^{i\omega t} \,dt \right\} $$

$$ =\frac{1}{\sqrt{2\pi}} Re\left\{ \frac{1}{a+i(b+\omega)} e^{t(a+i(b+\omega))} |^0_{-\infty} + \frac{1}{-a+i(b+\omega)} e^{t(-a+i(b+\omega))} |^\infty_0 \right\} $$

$$ = \frac{1}{\sqrt{2\pi}} Re\left\{ \frac{1}{a+i(b+\omega)} - \frac{1}{-a+i(b+\omega)} \right\}$$

$$= \frac{1}{\sqrt{2\pi}} \frac{2a}{a^2+(b+\omega)^2} ?$$

Also - would this be the same as the Fourier Cosine Transform? And would the Fourier Sine Transform be just Imaginary part of the exponential Transform?
 
Last edited:
Hi guys, what I would like to know is - can I do the FT using Euler's form for Cos(bt) - and then extract the real part w.r.t. b but leaving the complex parts w.r.t. wt? Or is the only possible approach here to use integration by parts?
 
I think your basic strategy is fine, but there are some details that may need improving:

\begin{align*}\hat{f}(\omega) &= \text{Re}\left\{ \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{\left(ib+iw\right)t} e^{-a|t|} \,dt \right\} \\
&=\frac{1}{\sqrt{2\pi}}\:\text{Re}\left\{ \int_{-\infty}^{0}e^{\left(ib+iw\right)t} e^{at} \,dt+
\int_{0}^{\infty}e^{\left(ib+iw\right)t} e^{-at} \,dt \right\} \\
&=\frac{1}{\sqrt{2\pi}}\:\text{Re}\left\{ \int_{-\infty}^{0}e^{\left(a+ib+iw\right)t} \,dt+
\int_{0}^{\infty}e^{\left(-a+ib+iw\right)t}\,dt \right\}.\end{align*}

Can you finish from here?
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
9K
  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 6 ·
Replies
6
Views
3K