3d Fourier transform of function which has only radial dependence ##f(r)##. Many authors in that case define(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\vec{k} \cdot \vec{r}=|\vec{k}||\vec{r}|\cos\theta[/tex]

where ##\theta## is angle in spherical polar coordinates.

So

[tex]\frac{1}{(2\pi)^3}\int\int_{V}\int e^{-i \vec{k} \cdot \vec{r}}f(r)=\frac{1}{(2\pi)^3}\int^{\infty}_0r^2f(r)dr\int^{\pi}_0\sin \theta d\theta \int^{2 \pi}_0 d\varphi e^{-ikr\cos \theta}[/tex]

Ok function ##f(r)## does not depend on angles, but why here we have specially angle ## \theta##?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Fourier transform of function which has only radial dependence

Loading...

Similar Threads - Fourier transform function | Date |
---|---|

A Zeros of Fourier transform | Jan 18, 2017 |

A Fourier transform and translational invariance | Nov 20, 2016 |

A Fourier transform of hyperbolic tangent | Oct 5, 2016 |

Fourier transform of function of a complex variable | Nov 4, 2014 |

**Physics Forums - The Fusion of Science and Community**