Fourier transform of triangle diagram

  • Thread starter Thread starter LCSphysicist
  • Start date Start date
  • Tags Tags
    Fourier Transform
Click For Summary
SUMMARY

The discussion centers on the Fourier transform of Feynman diagrams, specifically the transformation from a triangle diagram in position space to a star diagram in momentum space. The user presents multiple integrals involving propagators and delta functions, indicating confusion regarding the correct application of the Fourier transform. The key equations involve integrals of the form ∫ dp_x (1/(p_x^2 + m^2)) e^{i(p_x(x-y))} and related expressions, highlighting the complexity of the transformation process. The user seeks clarification on potential errors in their calculations, particularly concerning the integration over p_z.

PREREQUISITES
  • Understanding of Fourier Transform (FT) in quantum field theory.
  • Familiarity with Feynman diagrams and their representation in position and momentum space.
  • Knowledge of propagators and delta functions in quantum mechanics.
  • Basic proficiency in performing multiple integrals in theoretical physics.
NEXT STEPS
  • Study the properties of Fourier Transforms in quantum field theory.
  • Examine the role of propagators in Feynman diagrams, focusing on their mathematical representation.
  • Learn about the implications of delta functions in integrals and their significance in momentum conservation.
  • Review examples of transforming Feynman diagrams between position and momentum space.
USEFUL FOR

The discussion is beneficial for theoretical physicists, graduate students in quantum mechanics, and anyone studying Feynman diagrams and their Fourier transforms in particle physics.

LCSphysicist
Messages
644
Reaction score
162
Homework Statement
Show that the Fourier transform of the triangle diagram in x space in Fig. 1.3b is the
star diagram in p space in Fig. 1.3c.
Relevant Equations
.
1709922409314.png


OBS: Ignore factors of ## (2 \pi) ##, interpret any differential ##dx,dp## as ##d^4x,d^4p##, ##\int = \int \int = \int ... \int##. I am using ##x,y,z## instead of ##x_i##.

Honestly, i am a little confused how to show this "triangle-star duality". Look, the propagators in positions space gives me ##\int \frac{e^{ip(x-y)}}{p^2+m^2} dp##

$$
\int d x d y d z dp_x dp_y dp_z \frac{1}{p_x^2+m^2} \frac{1}{p_y^2+m^2} \frac{1}{p_z^2+m^2} e^{i(p_x (x-y) + p_y (y-z) + p_z (z-x))} e^{-i(q_1 x + q_2 y + q_3 z)}
$$



$$
\int d y d z dp_x dp_y dp_z \frac{1}{p_x^2+m^2} \frac{1}{p_y^2+m^2} \frac{1}{p_z^2+m^2} e^{i(p_x (-y) + p_y (y-z) + p_z (z))} e^{-i( q_2 y + q_3 z)} \delta(p_x - p_z - q_1)
$$


$$
\int d y d z dp_y dp_z \frac{1}{(p_z+q_1)^2+m^2} \frac{1}{p_y^2+m^2} \frac{1}{p_z^2+m^2} e^{i((p_z + q_1) (-y) + p_y (y-z) + p_z (z))} e^{-i( q_2 y + q_3 z)}
$$



$$
\int d z dp_y dp_z \frac{1}{(q_2 - p_y)^2+m^2} \frac{1}{p_y^2+m^2} \frac{1}{p_z^2+m^2} e^{i( + p_y (-z) + p_z (z))} e^{-i( q_3 z)} \delta (-p_z - q_1 + p_y - q_2)
$$



$$
\int d z dp_z \frac{1}{(q_1+p_z)^2+m^2} \frac{1}{(q_2 + q_1 + p_z)^2+m^2} \frac{1}{p_z^2+m^2} e^{i( (q_2+q_1+p_z)(-z) + p_z (z))} e^{-i( q_3 z)}
$$

$$
\int dp_z \frac{1}{(q_1+p_z)^2+m^2} \frac{1}{(q_2 + q_1 + p_z)^2+m^2} \frac{1}{p_z^2+m^2} \delta(q_1+q_2+q_3)
$$

If there was no ##p_z## integral, i think the answer would be correct (the ##\delta## i got is an indication of it, i think). Where did i committed an error?
 
Physics news on Phys.org
LCSphysicist said:
Homework Statement: Show that the Fourier transform of the triangle diagram in x space in Fig. 1.3b is the
star diagram in p space in Fig. 1.3c.
Relevant Equations: .

View attachment 341469
Can you define both the diagram and what you mean by FT?
Are you talking about functions in 2D (images)?
 
Philip Koeck said:
Can you define both the diagram and what you mean by FT?
Are you talking about functions in 2D (images)?
By FT i mean Fourier Transform.
These images represents Feynman Diagrams, actually. In position (triangle) and momentum (star) space.
 
  • Like
Likes Philip Koeck

Similar threads

  • · Replies 8 ·
Replies
8
Views
988
  • · Replies 3 ·
Replies
3
Views
2K
Replies
15
Views
4K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K