MHB Fourier transform to solve the wave equation

Click For Summary
The discussion focuses on using the Fourier transform to solve the wave equation, specifically addressing the relationship between the transformed variables and initial conditions. The user derives the equation for the Fourier transform of the wave equation, leading to expressions involving cosine and sine functions. They confirm their calculations for the transformed initial conditions but express uncertainty about the inverse Fourier transform. Another participant suggests searching for resources on the wave equation and Fourier series for further clarification. The conversation emphasizes the application of Fourier transforms in solving partial differential equations.
Markov2
Messages
149
Reaction score
0
I need to use the Fourier transform to solve the wave equation:

$\begin{aligned} & {{u}_{tt}}={{c}^{2}}{{u}_{xx}},\text{ }x\in \mathbb{R},\text{ }t>0, \\
& u(x,0)=f(x), \\
& {{u}_{t}}(x,0)=g(x).
\end{aligned}
$

So I have $\dfrac{{{\partial }^{2}}F(u)}{\partial {{t}^{2}}}=-{{c}^{2}}{{w}^{2}}F(u)$ which gives $F(u(x,w))(t)=c_1\cos(wct)+c_2\sin(wct)$ and $F(u(x,0))=F(f )$ (1) and $\dfrac{\partial F(u(x,0))}{\partial t}=g(x)$ (2). So by using (1) I get $F(u(x,0))=c_1=F( f)$ and $F_t(u(x,0))=c_2cw=g(x)$ so $F(u(x,w))=F( f)\cos(wct)+\dfrac{g(x)}{cw}\sin(wct).$

Well I want to know if I'm correct so far. After this, I'm having problems with the inverse! :(
 
Physics news on Phys.org
Markov said:
I need to use the Fourier transform to solve the wave equation:

$\begin{aligned} & {{u}_{tt}}={{c}^{2}}{{u}_{xx}},\text{ }x\in \mathbb{R},\text{ }t>0, \\
& u(x,0)=f(x), \\
& {{u}_{t}}(x,0)=g(x).
\end{aligned}
$

So I have $\dfrac{{{\partial }^{2}}F(u)}{\partial {{t}^{2}}}=-{{c}^{2}}{{w}^{2}}F(u)$ which gives $F(u(x,w))(t)=c_1\cos(wct)+c_2\sin(wct)$ and $F(u(x,0))=F(f )$ (1) and $\dfrac{\partial F(u(x,0))}{\partial t}=g(x)$ (2). So by using (1) I get $F(u(x,0))=c_1=F( f)$ and $F_t(u(x,0))=c_2cw=g(x)$ so $F(u(x,w))=F( f)\cos(wct)+\dfrac{g(x)}{cw}\sin(wct).$

Well I want to know if I'm correct so far. After this, I'm having problems with the inverse! :(

Hi Markov, :)

I think you can find the method of solving the wave equation using the Fourier transform if you Google something like, "wave equation and Fourier series". You may find the answer to your question http://www.iam.ubc.ca/%7Esospedra/05-separation.pdf(Scroll down, and at the end the Fourier series method is given).

Kind Regards,
Sudharaka.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K