MHB Fourier transform to solve the wave equation

Markov2
Messages
149
Reaction score
0
I need to use the Fourier transform to solve the wave equation:

$\begin{aligned} & {{u}_{tt}}={{c}^{2}}{{u}_{xx}},\text{ }x\in \mathbb{R},\text{ }t>0, \\
& u(x,0)=f(x), \\
& {{u}_{t}}(x,0)=g(x).
\end{aligned}
$

So I have $\dfrac{{{\partial }^{2}}F(u)}{\partial {{t}^{2}}}=-{{c}^{2}}{{w}^{2}}F(u)$ which gives $F(u(x,w))(t)=c_1\cos(wct)+c_2\sin(wct)$ and $F(u(x,0))=F(f )$ (1) and $\dfrac{\partial F(u(x,0))}{\partial t}=g(x)$ (2). So by using (1) I get $F(u(x,0))=c_1=F( f)$ and $F_t(u(x,0))=c_2cw=g(x)$ so $F(u(x,w))=F( f)\cos(wct)+\dfrac{g(x)}{cw}\sin(wct).$

Well I want to know if I'm correct so far. After this, I'm having problems with the inverse! :(
 
Physics news on Phys.org
Markov said:
I need to use the Fourier transform to solve the wave equation:

$\begin{aligned} & {{u}_{tt}}={{c}^{2}}{{u}_{xx}},\text{ }x\in \mathbb{R},\text{ }t>0, \\
& u(x,0)=f(x), \\
& {{u}_{t}}(x,0)=g(x).
\end{aligned}
$

So I have $\dfrac{{{\partial }^{2}}F(u)}{\partial {{t}^{2}}}=-{{c}^{2}}{{w}^{2}}F(u)$ which gives $F(u(x,w))(t)=c_1\cos(wct)+c_2\sin(wct)$ and $F(u(x,0))=F(f )$ (1) and $\dfrac{\partial F(u(x,0))}{\partial t}=g(x)$ (2). So by using (1) I get $F(u(x,0))=c_1=F( f)$ and $F_t(u(x,0))=c_2cw=g(x)$ so $F(u(x,w))=F( f)\cos(wct)+\dfrac{g(x)}{cw}\sin(wct).$

Well I want to know if I'm correct so far. After this, I'm having problems with the inverse! :(

Hi Markov, :)

I think you can find the method of solving the wave equation using the Fourier transform if you Google something like, "wave equation and Fourier series". You may find the answer to your question http://www.iam.ubc.ca/%7Esospedra/05-separation.pdf(Scroll down, and at the end the Fourier series method is given).

Kind Regards,
Sudharaka.
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
3
Views
3K