Fourier transform to solve the wave equation

Click For Summary
SUMMARY

The discussion focuses on using the Fourier transform to solve the wave equation defined by the second-order partial differential equation \( u_{tt} = c^2 u_{xx} \) with initial conditions \( u(x,0) = f(x) \) and \( u_t(x,0) = g(x) \). The user derives the solution in the frequency domain, obtaining \( F(u(x,w))(t) = F(f) \cos(wct) + \frac{g(x)}{cw} \sin(wct) \). The user seeks confirmation of their approach and assistance with the inverse Fourier transform to revert to the spatial domain.

PREREQUISITES
  • Understanding of partial differential equations, specifically the wave equation.
  • Familiarity with Fourier transforms and their properties.
  • Knowledge of initial value problems in the context of differential equations.
  • Basic skills in mathematical analysis and manipulation of functions.
NEXT STEPS
  • Research the method of solving the wave equation using Fourier transforms in detail.
  • Study the inverse Fourier transform and its application in reverting solutions to the spatial domain.
  • Explore the relationship between Fourier series and Fourier transforms for solving boundary value problems.
  • Examine examples of wave equation solutions using Fourier methods in academic papers or textbooks.
USEFUL FOR

Mathematicians, physicists, and engineers working with wave phenomena, as well as students studying partial differential equations and Fourier analysis.

Markov2
Messages
149
Reaction score
0
I need to use the Fourier transform to solve the wave equation:

$\begin{aligned} & {{u}_{tt}}={{c}^{2}}{{u}_{xx}},\text{ }x\in \mathbb{R},\text{ }t>0, \\
& u(x,0)=f(x), \\
& {{u}_{t}}(x,0)=g(x).
\end{aligned}
$

So I have $\dfrac{{{\partial }^{2}}F(u)}{\partial {{t}^{2}}}=-{{c}^{2}}{{w}^{2}}F(u)$ which gives $F(u(x,w))(t)=c_1\cos(wct)+c_2\sin(wct)$ and $F(u(x,0))=F(f )$ (1) and $\dfrac{\partial F(u(x,0))}{\partial t}=g(x)$ (2). So by using (1) I get $F(u(x,0))=c_1=F( f)$ and $F_t(u(x,0))=c_2cw=g(x)$ so $F(u(x,w))=F( f)\cos(wct)+\dfrac{g(x)}{cw}\sin(wct).$

Well I want to know if I'm correct so far. After this, I'm having problems with the inverse! :(
 
Physics news on Phys.org
Markov said:
I need to use the Fourier transform to solve the wave equation:

$\begin{aligned} & {{u}_{tt}}={{c}^{2}}{{u}_{xx}},\text{ }x\in \mathbb{R},\text{ }t>0, \\
& u(x,0)=f(x), \\
& {{u}_{t}}(x,0)=g(x).
\end{aligned}
$

So I have $\dfrac{{{\partial }^{2}}F(u)}{\partial {{t}^{2}}}=-{{c}^{2}}{{w}^{2}}F(u)$ which gives $F(u(x,w))(t)=c_1\cos(wct)+c_2\sin(wct)$ and $F(u(x,0))=F(f )$ (1) and $\dfrac{\partial F(u(x,0))}{\partial t}=g(x)$ (2). So by using (1) I get $F(u(x,0))=c_1=F( f)$ and $F_t(u(x,0))=c_2cw=g(x)$ so $F(u(x,w))=F( f)\cos(wct)+\dfrac{g(x)}{cw}\sin(wct).$

Well I want to know if I'm correct so far. After this, I'm having problems with the inverse! :(

Hi Markov, :)

I think you can find the method of solving the wave equation using the Fourier transform if you Google something like, "wave equation and Fourier series". You may find the answer to your question http://www.iam.ubc.ca/%7Esospedra/05-separation.pdf(Scroll down, and at the end the Fourier series method is given).

Kind Regards,
Sudharaka.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K