MHB Frank's questions at Yahoo Answers regarding de Moivre's theorem

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
The discussion revolves around Frank's questions related to de Moivre's theorem and its applications in complex numbers. The first part involves proving the theorem using mathematical induction, confirming that (cos(x) + i sin(x))^n equals cos(nx) + i sin(nx) for positive integers n. The second part demonstrates that the inverse of a complex number z can be expressed as cos(-x) + i sin(-x), leading to the conclusion that z^n + z^-n equals 2 cos(nx). Finally, the binomial expansion of (z + z^-1)^5 is derived, showing that cos^5(x) can be expressed as a linear combination of cos(5x), cos(3x), and cos(x) with specific coefficients. The discussion effectively illustrates the application of de Moivre's theorem in complex analysis and trigonometric identities.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Induction and Complex #'s. Calc help?


a) Prove, using mathematical induction, that for a positive integer n, (cos(x) + isinx)^n = cosnx +i sinnx where I^2 + -1

b)The complex number z is defined by z = cosx + isinx
I) show that 1/z = cos (-x) + isin(-x)
II) Deduce that z^n + z^-n = 2cosnx

c) Find the binomial expansion of (z + z^-1)^5
I) Hence show tat cos^5x = 1/16(acoas5x + bcos3x + ccosx) where a,b,c are positive integers to be found.

Thank you so much for you help!

I have posted a link there to this topic, so the OP can see my work.
 
Mathematics news on Phys.org
Hello Frank,

a) First, we check to see if $P_1$ (the case where $n=1$) is valid.

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^1= \cos(1 \cdot \theta)+i \cdot \sin(1 \cdot \theta)$$

$$\cos( \theta)+i \cdot \sin( \theta)= \cos( \theta)+i \cdot \sin( \theta)$$

$P_1$ is true. Next, our induction hypothesis $P_n$ is:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^n= \cos(n \cdot \theta)+i \cdot \sin(n \cdot \theta)$$

Multiply both sides by $$\cos( \theta)+i \cdot \sin( \theta)$$:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^n \left( \cos( \theta)+i \cdot \sin( \theta) \right)= \left( \cos(n \cdot \theta)+i \cdot \sin(n \cdot \theta) \right) \left( \cos( \theta)+i \cdot \sin( \theta) \right)$$

$$ \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos(n \cdot \theta) \cos( \theta)+i \cdot \cos(n \cdot \theta) \sin( \theta)+i \cdot \cos( \theta) \sin(n \cdot \theta)+i^2 \cdot \sin( \theta) \sin(n \cdot \theta)$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \left( \cos(n \cdot \theta) \cos( \theta)- \sin(n \cdot \theta) \sin( \theta) \right)+i \left( \sin( \theta) \cos(n \cdot \theta)+ \cos( \theta) \sin(n \cdot \theta) \right)$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos \left(n \cdot \theta+ \theta \right)+i \cdot \sin \left(n \cdot \theta+ \theta \right)$$

$$\left( \cos(\theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos \left((n+1) \cdot \theta \right)+i \cdot \sin \left((n+1) \cdot \theta \right)$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

b) For this question and for part c), we will find proving the following useful:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)$$ where $n\le0\in\mathbb{Z}$

First, we check to see if $P_0$ (the case where $n=0$) is valid.

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^0= \cos(0 \cdot \theta)+i \cdot \sin(0 \cdot \theta)$$

$$1= \cos(0)+i \cdot \sin(0)=1$$

$P_0$ is true. Next, our induction hypothesis $P_n$ is:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)$$

Multiply both sides by $$\left(\cos( \theta)+i \cdot \sin( \theta) \right)^{-1}$$:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n} \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-1}= \frac{\cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)}{ \cos( \theta)+i \cdot \sin( \theta)}$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \frac{ \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)}{ \cos( \theta)+i \cdot \sin( \theta)} \cdot \frac{ \cos( \theta)-i \cdot \sin( \theta)}{ \cos( \theta)-i \cdot \sin( \theta)}$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \frac{ \cos(n \cdot \theta) \cos(\theta)-i \cos(n \cdot \theta) \sin(\theta)-i \sin(n \cdot \theta) \cos(\theta)+i^2 \sin(n \cdot \theta) \sin(\theta)}{\cos^2(\theta)+\sin^2(\theta)}$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \left(\cos(n \cdot \theta) \cos(\theta)- \sin(n \cdot \theta) \sin(\theta) \right)-i \left(\cos(n \cdot \theta) \sin(\theta)+ \sin(n \cdot \theta) \cos(\theta) \right)$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \cos \left((n+1)\theta \right)-i \cdot \sin \left((n+1)\theta \right)$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

Observing that $\cos(-\theta)=\cos(\theta)$ and $\sin(-\theta)=-\sin(\theta)$, we may state:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(-n \cdot \theta)+i \cdot \sin(-n \cdot \theta)$$

Thus, we have proved:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{k}= \cos(k \cdot \theta)+i \cdot \sin(k \cdot \theta)$$ where $$k\in\mathbb{Z}$$

i) Given that $$z=\cos(x)+i \cdot \sin(x)$$ then we may use our theorem (actually de Moivre's theorem) to state:

$$\frac{1}{z}=z^{-1}=\left(\cos(x)+i \cdot \sin(x) \right)^{-1}=\cos(-x)+i \cdot \sin(-x)$$

ii) And so we may show that:

$$z^n+z^{-n}=\cos(nx)+i \cdot \sin(nx)+\cos(x)-i \cdot \sin(nx)=2 \cos(nx)$$

c) Using the binomial theorem, we find:

$$\left(z+z^{-1} \right)^5=\sum_{k=0}^5{5 \choose k}z^{5-k}z^{-k}=\sum_{k=0}^5{5 \choose k}z^{5-2k}$$

$$\left(z+z^{-1} \right)^5=z^5+5z^3+10z+10z^{-1}+5z^{-3}+z^{-5}$$

$$\left(z+z^{-1} \right)^5=\left(z^5+z^{-5} \right)+5\left(z^3+z^{-3} \right)+10\left(z+z^{-1} \right)$$

Using the result of b) ii) we may state:

$$\left(z+z^{-1} \right)^5=\left(2 \cos(5x) \right)+5\left(2 \cos(3x) \right)+10\left(2 \cos(x) \right)$$

$$\left(z+z^{-1} \right)^5=2 \cos(5x)+10 \cos(3x)+20 \cos(x)$$

i) Using the result of b) ii) we may state:

$$\left(z+z^{-1} \right)^5=\left(2\cos(x) \right)^5=32\cos^5(x)$$

And so using the previous result, we then find:

$$32\cos^5(x)=2 \cos(5x)+10 \cos(3x)+20 \cos(x)$$

Hence:

$$\cos^5(x)=\frac{1}{16}\left( \cos(5x)+5 \cos(3x)+10 \cos(x) \right)$$

Thus, we have found:

$$a=1,\,b=5,\,c=10$$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 8 ·
Replies
8
Views
9K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K