Frank's questions at Yahoo Answers regarding de Moivre's theorem

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
SUMMARY

This discussion focuses on Frank's questions regarding de Moivre's theorem and its applications in complex numbers. The proof by mathematical induction for the identity \((\cos(x) + i\sin(x))^n = \cos(nx) + i\sin(nx)\) is established, demonstrating its validity for positive integers \(n\). Additionally, the discussion covers the derivation of the expression \(z^n + z^{-n} = 2\cos(nx)\) and the binomial expansion of \((z + z^{-1})^5\), leading to the conclusion that \(\cos^5(x) = \frac{1}{16}(\cos(5x) + 5\cos(3x) + 10\cos(x))\) with specific integer coefficients.

PREREQUISITES
  • Understanding of complex numbers and Euler's formula
  • Familiarity with mathematical induction
  • Knowledge of the binomial theorem
  • Basic trigonometric identities
NEXT STEPS
  • Study the applications of de Moivre's theorem in solving complex equations
  • Learn about the properties of complex numbers in polar form
  • Explore advanced topics in mathematical induction techniques
  • Investigate the implications of the binomial theorem in combinatorial mathematics
USEFUL FOR

Mathematicians, students studying complex analysis, educators teaching trigonometry and complex numbers, and anyone interested in the applications of de Moivre's theorem in mathematical proofs.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Induction and Complex #'s. Calc help?


a) Prove, using mathematical induction, that for a positive integer n, (cos(x) + isinx)^n = cosnx +i sinnx where I^2 + -1

b)The complex number z is defined by z = cosx + isinx
I) show that 1/z = cos (-x) + isin(-x)
II) Deduce that z^n + z^-n = 2cosnx

c) Find the binomial expansion of (z + z^-1)^5
I) Hence show tat cos^5x = 1/16(acoas5x + bcos3x + ccosx) where a,b,c are positive integers to be found.

Thank you so much for you help!

I have posted a link there to this topic, so the OP can see my work.
 
Mathematics news on Phys.org
Hello Frank,

a) First, we check to see if $P_1$ (the case where $n=1$) is valid.

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^1= \cos(1 \cdot \theta)+i \cdot \sin(1 \cdot \theta)$$

$$\cos( \theta)+i \cdot \sin( \theta)= \cos( \theta)+i \cdot \sin( \theta)$$

$P_1$ is true. Next, our induction hypothesis $P_n$ is:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^n= \cos(n \cdot \theta)+i \cdot \sin(n \cdot \theta)$$

Multiply both sides by $$\cos( \theta)+i \cdot \sin( \theta)$$:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^n \left( \cos( \theta)+i \cdot \sin( \theta) \right)= \left( \cos(n \cdot \theta)+i \cdot \sin(n \cdot \theta) \right) \left( \cos( \theta)+i \cdot \sin( \theta) \right)$$

$$ \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos(n \cdot \theta) \cos( \theta)+i \cdot \cos(n \cdot \theta) \sin( \theta)+i \cdot \cos( \theta) \sin(n \cdot \theta)+i^2 \cdot \sin( \theta) \sin(n \cdot \theta)$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \left( \cos(n \cdot \theta) \cos( \theta)- \sin(n \cdot \theta) \sin( \theta) \right)+i \left( \sin( \theta) \cos(n \cdot \theta)+ \cos( \theta) \sin(n \cdot \theta) \right)$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos \left(n \cdot \theta+ \theta \right)+i \cdot \sin \left(n \cdot \theta+ \theta \right)$$

$$\left( \cos(\theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos \left((n+1) \cdot \theta \right)+i \cdot \sin \left((n+1) \cdot \theta \right)$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

b) For this question and for part c), we will find proving the following useful:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)$$ where $n\le0\in\mathbb{Z}$

First, we check to see if $P_0$ (the case where $n=0$) is valid.

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^0= \cos(0 \cdot \theta)+i \cdot \sin(0 \cdot \theta)$$

$$1= \cos(0)+i \cdot \sin(0)=1$$

$P_0$ is true. Next, our induction hypothesis $P_n$ is:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)$$

Multiply both sides by $$\left(\cos( \theta)+i \cdot \sin( \theta) \right)^{-1}$$:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n} \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-1}= \frac{\cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)}{ \cos( \theta)+i \cdot \sin( \theta)}$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \frac{ \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)}{ \cos( \theta)+i \cdot \sin( \theta)} \cdot \frac{ \cos( \theta)-i \cdot \sin( \theta)}{ \cos( \theta)-i \cdot \sin( \theta)}$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \frac{ \cos(n \cdot \theta) \cos(\theta)-i \cos(n \cdot \theta) \sin(\theta)-i \sin(n \cdot \theta) \cos(\theta)+i^2 \sin(n \cdot \theta) \sin(\theta)}{\cos^2(\theta)+\sin^2(\theta)}$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \left(\cos(n \cdot \theta) \cos(\theta)- \sin(n \cdot \theta) \sin(\theta) \right)-i \left(\cos(n \cdot \theta) \sin(\theta)+ \sin(n \cdot \theta) \cos(\theta) \right)$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \cos \left((n+1)\theta \right)-i \cdot \sin \left((n+1)\theta \right)$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

Observing that $\cos(-\theta)=\cos(\theta)$ and $\sin(-\theta)=-\sin(\theta)$, we may state:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(-n \cdot \theta)+i \cdot \sin(-n \cdot \theta)$$

Thus, we have proved:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{k}= \cos(k \cdot \theta)+i \cdot \sin(k \cdot \theta)$$ where $$k\in\mathbb{Z}$$

i) Given that $$z=\cos(x)+i \cdot \sin(x)$$ then we may use our theorem (actually de Moivre's theorem) to state:

$$\frac{1}{z}=z^{-1}=\left(\cos(x)+i \cdot \sin(x) \right)^{-1}=\cos(-x)+i \cdot \sin(-x)$$

ii) And so we may show that:

$$z^n+z^{-n}=\cos(nx)+i \cdot \sin(nx)+\cos(x)-i \cdot \sin(nx)=2 \cos(nx)$$

c) Using the binomial theorem, we find:

$$\left(z+z^{-1} \right)^5=\sum_{k=0}^5{5 \choose k}z^{5-k}z^{-k}=\sum_{k=0}^5{5 \choose k}z^{5-2k}$$

$$\left(z+z^{-1} \right)^5=z^5+5z^3+10z+10z^{-1}+5z^{-3}+z^{-5}$$

$$\left(z+z^{-1} \right)^5=\left(z^5+z^{-5} \right)+5\left(z^3+z^{-3} \right)+10\left(z+z^{-1} \right)$$

Using the result of b) ii) we may state:

$$\left(z+z^{-1} \right)^5=\left(2 \cos(5x) \right)+5\left(2 \cos(3x) \right)+10\left(2 \cos(x) \right)$$

$$\left(z+z^{-1} \right)^5=2 \cos(5x)+10 \cos(3x)+20 \cos(x)$$

i) Using the result of b) ii) we may state:

$$\left(z+z^{-1} \right)^5=\left(2\cos(x) \right)^5=32\cos^5(x)$$

And so using the previous result, we then find:

$$32\cos^5(x)=2 \cos(5x)+10 \cos(3x)+20 \cos(x)$$

Hence:

$$\cos^5(x)=\frac{1}{16}\left( \cos(5x)+5 \cos(3x)+10 \cos(x) \right)$$

Thus, we have found:

$$a=1,\,b=5,\,c=10$$
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
9K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
18
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 28 ·
Replies
28
Views
6K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K