MHB Frank's questions at Yahoo Answers regarding de Moivre's theorem

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Theorem
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Induction and Complex #'s. Calc help?


a) Prove, using mathematical induction, that for a positive integer n, (cos(x) + isinx)^n = cosnx +i sinnx where I^2 + -1

b)The complex number z is defined by z = cosx + isinx
I) show that 1/z = cos (-x) + isin(-x)
II) Deduce that z^n + z^-n = 2cosnx

c) Find the binomial expansion of (z + z^-1)^5
I) Hence show tat cos^5x = 1/16(acoas5x + bcos3x + ccosx) where a,b,c are positive integers to be found.

Thank you so much for you help!

I have posted a link there to this topic, so the OP can see my work.
 
Mathematics news on Phys.org
Hello Frank,

a) First, we check to see if $P_1$ (the case where $n=1$) is valid.

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^1= \cos(1 \cdot \theta)+i \cdot \sin(1 \cdot \theta)$$

$$\cos( \theta)+i \cdot \sin( \theta)= \cos( \theta)+i \cdot \sin( \theta)$$

$P_1$ is true. Next, our induction hypothesis $P_n$ is:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^n= \cos(n \cdot \theta)+i \cdot \sin(n \cdot \theta)$$

Multiply both sides by $$\cos( \theta)+i \cdot \sin( \theta)$$:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^n \left( \cos( \theta)+i \cdot \sin( \theta) \right)= \left( \cos(n \cdot \theta)+i \cdot \sin(n \cdot \theta) \right) \left( \cos( \theta)+i \cdot \sin( \theta) \right)$$

$$ \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos(n \cdot \theta) \cos( \theta)+i \cdot \cos(n \cdot \theta) \sin( \theta)+i \cdot \cos( \theta) \sin(n \cdot \theta)+i^2 \cdot \sin( \theta) \sin(n \cdot \theta)$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \left( \cos(n \cdot \theta) \cos( \theta)- \sin(n \cdot \theta) \sin( \theta) \right)+i \left( \sin( \theta) \cos(n \cdot \theta)+ \cos( \theta) \sin(n \cdot \theta) \right)$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos \left(n \cdot \theta+ \theta \right)+i \cdot \sin \left(n \cdot \theta+ \theta \right)$$

$$\left( \cos(\theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos \left((n+1) \cdot \theta \right)+i \cdot \sin \left((n+1) \cdot \theta \right)$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

b) For this question and for part c), we will find proving the following useful:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)$$ where $n\le0\in\mathbb{Z}$

First, we check to see if $P_0$ (the case where $n=0$) is valid.

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^0= \cos(0 \cdot \theta)+i \cdot \sin(0 \cdot \theta)$$

$$1= \cos(0)+i \cdot \sin(0)=1$$

$P_0$ is true. Next, our induction hypothesis $P_n$ is:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)$$

Multiply both sides by $$\left(\cos( \theta)+i \cdot \sin( \theta) \right)^{-1}$$:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n} \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-1}= \frac{\cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)}{ \cos( \theta)+i \cdot \sin( \theta)}$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \frac{ \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)}{ \cos( \theta)+i \cdot \sin( \theta)} \cdot \frac{ \cos( \theta)-i \cdot \sin( \theta)}{ \cos( \theta)-i \cdot \sin( \theta)}$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \frac{ \cos(n \cdot \theta) \cos(\theta)-i \cos(n \cdot \theta) \sin(\theta)-i \sin(n \cdot \theta) \cos(\theta)+i^2 \sin(n \cdot \theta) \sin(\theta)}{\cos^2(\theta)+\sin^2(\theta)}$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \left(\cos(n \cdot \theta) \cos(\theta)- \sin(n \cdot \theta) \sin(\theta) \right)-i \left(\cos(n \cdot \theta) \sin(\theta)+ \sin(n \cdot \theta) \cos(\theta) \right)$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \cos \left((n+1)\theta \right)-i \cdot \sin \left((n+1)\theta \right)$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

Observing that $\cos(-\theta)=\cos(\theta)$ and $\sin(-\theta)=-\sin(\theta)$, we may state:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(-n \cdot \theta)+i \cdot \sin(-n \cdot \theta)$$

Thus, we have proved:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{k}= \cos(k \cdot \theta)+i \cdot \sin(k \cdot \theta)$$ where $$k\in\mathbb{Z}$$

i) Given that $$z=\cos(x)+i \cdot \sin(x)$$ then we may use our theorem (actually de Moivre's theorem) to state:

$$\frac{1}{z}=z^{-1}=\left(\cos(x)+i \cdot \sin(x) \right)^{-1}=\cos(-x)+i \cdot \sin(-x)$$

ii) And so we may show that:

$$z^n+z^{-n}=\cos(nx)+i \cdot \sin(nx)+\cos(x)-i \cdot \sin(nx)=2 \cos(nx)$$

c) Using the binomial theorem, we find:

$$\left(z+z^{-1} \right)^5=\sum_{k=0}^5{5 \choose k}z^{5-k}z^{-k}=\sum_{k=0}^5{5 \choose k}z^{5-2k}$$

$$\left(z+z^{-1} \right)^5=z^5+5z^3+10z+10z^{-1}+5z^{-3}+z^{-5}$$

$$\left(z+z^{-1} \right)^5=\left(z^5+z^{-5} \right)+5\left(z^3+z^{-3} \right)+10\left(z+z^{-1} \right)$$

Using the result of b) ii) we may state:

$$\left(z+z^{-1} \right)^5=\left(2 \cos(5x) \right)+5\left(2 \cos(3x) \right)+10\left(2 \cos(x) \right)$$

$$\left(z+z^{-1} \right)^5=2 \cos(5x)+10 \cos(3x)+20 \cos(x)$$

i) Using the result of b) ii) we may state:

$$\left(z+z^{-1} \right)^5=\left(2\cos(x) \right)^5=32\cos^5(x)$$

And so using the previous result, we then find:

$$32\cos^5(x)=2 \cos(5x)+10 \cos(3x)+20 \cos(x)$$

Hence:

$$\cos^5(x)=\frac{1}{16}\left( \cos(5x)+5 \cos(3x)+10 \cos(x) \right)$$

Thus, we have found:

$$a=1,\,b=5,\,c=10$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top