MHB Frank's questions at Yahoo Answers regarding de Moivre's theorem

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Theorem
AI Thread Summary
The discussion revolves around Frank's questions related to de Moivre's theorem and its applications in complex numbers. The first part involves proving the theorem using mathematical induction, confirming that (cos(x) + i sin(x))^n equals cos(nx) + i sin(nx) for positive integers n. The second part demonstrates that the inverse of a complex number z can be expressed as cos(-x) + i sin(-x), leading to the conclusion that z^n + z^-n equals 2 cos(nx). Finally, the binomial expansion of (z + z^-1)^5 is derived, showing that cos^5(x) can be expressed as a linear combination of cos(5x), cos(3x), and cos(x) with specific coefficients. The discussion effectively illustrates the application of de Moivre's theorem in complex analysis and trigonometric identities.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Induction and Complex #'s. Calc help?


a) Prove, using mathematical induction, that for a positive integer n, (cos(x) + isinx)^n = cosnx +i sinnx where I^2 + -1

b)The complex number z is defined by z = cosx + isinx
I) show that 1/z = cos (-x) + isin(-x)
II) Deduce that z^n + z^-n = 2cosnx

c) Find the binomial expansion of (z + z^-1)^5
I) Hence show tat cos^5x = 1/16(acoas5x + bcos3x + ccosx) where a,b,c are positive integers to be found.

Thank you so much for you help!

I have posted a link there to this topic, so the OP can see my work.
 
Mathematics news on Phys.org
Hello Frank,

a) First, we check to see if $P_1$ (the case where $n=1$) is valid.

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^1= \cos(1 \cdot \theta)+i \cdot \sin(1 \cdot \theta)$$

$$\cos( \theta)+i \cdot \sin( \theta)= \cos( \theta)+i \cdot \sin( \theta)$$

$P_1$ is true. Next, our induction hypothesis $P_n$ is:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^n= \cos(n \cdot \theta)+i \cdot \sin(n \cdot \theta)$$

Multiply both sides by $$\cos( \theta)+i \cdot \sin( \theta)$$:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^n \left( \cos( \theta)+i \cdot \sin( \theta) \right)= \left( \cos(n \cdot \theta)+i \cdot \sin(n \cdot \theta) \right) \left( \cos( \theta)+i \cdot \sin( \theta) \right)$$

$$ \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos(n \cdot \theta) \cos( \theta)+i \cdot \cos(n \cdot \theta) \sin( \theta)+i \cdot \cos( \theta) \sin(n \cdot \theta)+i^2 \cdot \sin( \theta) \sin(n \cdot \theta)$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \left( \cos(n \cdot \theta) \cos( \theta)- \sin(n \cdot \theta) \sin( \theta) \right)+i \left( \sin( \theta) \cos(n \cdot \theta)+ \cos( \theta) \sin(n \cdot \theta) \right)$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos \left(n \cdot \theta+ \theta \right)+i \cdot \sin \left(n \cdot \theta+ \theta \right)$$

$$\left( \cos(\theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos \left((n+1) \cdot \theta \right)+i \cdot \sin \left((n+1) \cdot \theta \right)$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

b) For this question and for part c), we will find proving the following useful:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)$$ where $n\le0\in\mathbb{Z}$

First, we check to see if $P_0$ (the case where $n=0$) is valid.

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^0= \cos(0 \cdot \theta)+i \cdot \sin(0 \cdot \theta)$$

$$1= \cos(0)+i \cdot \sin(0)=1$$

$P_0$ is true. Next, our induction hypothesis $P_n$ is:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)$$

Multiply both sides by $$\left(\cos( \theta)+i \cdot \sin( \theta) \right)^{-1}$$:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n} \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-1}= \frac{\cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)}{ \cos( \theta)+i \cdot \sin( \theta)}$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \frac{ \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)}{ \cos( \theta)+i \cdot \sin( \theta)} \cdot \frac{ \cos( \theta)-i \cdot \sin( \theta)}{ \cos( \theta)-i \cdot \sin( \theta)}$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \frac{ \cos(n \cdot \theta) \cos(\theta)-i \cos(n \cdot \theta) \sin(\theta)-i \sin(n \cdot \theta) \cos(\theta)+i^2 \sin(n \cdot \theta) \sin(\theta)}{\cos^2(\theta)+\sin^2(\theta)}$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \left(\cos(n \cdot \theta) \cos(\theta)- \sin(n \cdot \theta) \sin(\theta) \right)-i \left(\cos(n \cdot \theta) \sin(\theta)+ \sin(n \cdot \theta) \cos(\theta) \right)$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \cos \left((n+1)\theta \right)-i \cdot \sin \left((n+1)\theta \right)$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

Observing that $\cos(-\theta)=\cos(\theta)$ and $\sin(-\theta)=-\sin(\theta)$, we may state:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(-n \cdot \theta)+i \cdot \sin(-n \cdot \theta)$$

Thus, we have proved:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{k}= \cos(k \cdot \theta)+i \cdot \sin(k \cdot \theta)$$ where $$k\in\mathbb{Z}$$

i) Given that $$z=\cos(x)+i \cdot \sin(x)$$ then we may use our theorem (actually de Moivre's theorem) to state:

$$\frac{1}{z}=z^{-1}=\left(\cos(x)+i \cdot \sin(x) \right)^{-1}=\cos(-x)+i \cdot \sin(-x)$$

ii) And so we may show that:

$$z^n+z^{-n}=\cos(nx)+i \cdot \sin(nx)+\cos(x)-i \cdot \sin(nx)=2 \cos(nx)$$

c) Using the binomial theorem, we find:

$$\left(z+z^{-1} \right)^5=\sum_{k=0}^5{5 \choose k}z^{5-k}z^{-k}=\sum_{k=0}^5{5 \choose k}z^{5-2k}$$

$$\left(z+z^{-1} \right)^5=z^5+5z^3+10z+10z^{-1}+5z^{-3}+z^{-5}$$

$$\left(z+z^{-1} \right)^5=\left(z^5+z^{-5} \right)+5\left(z^3+z^{-3} \right)+10\left(z+z^{-1} \right)$$

Using the result of b) ii) we may state:

$$\left(z+z^{-1} \right)^5=\left(2 \cos(5x) \right)+5\left(2 \cos(3x) \right)+10\left(2 \cos(x) \right)$$

$$\left(z+z^{-1} \right)^5=2 \cos(5x)+10 \cos(3x)+20 \cos(x)$$

i) Using the result of b) ii) we may state:

$$\left(z+z^{-1} \right)^5=\left(2\cos(x) \right)^5=32\cos^5(x)$$

And so using the previous result, we then find:

$$32\cos^5(x)=2 \cos(5x)+10 \cos(3x)+20 \cos(x)$$

Hence:

$$\cos^5(x)=\frac{1}{16}\left( \cos(5x)+5 \cos(3x)+10 \cos(x) \right)$$

Thus, we have found:

$$a=1,\,b=5,\,c=10$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top