MHB Free and Finitely Generated Modules

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Modules
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Want to confirm my understanding about Free and Finitely Generated modules. I want to know whether the following ideas are correct. Thank you for all your help. :)

1) Is every free module a finitely generated module?

No. Because a free module may have an infinite basis. So we cannot say it's finitely generated. However if the free module has a finite basis it's finitely generated.

2) Is every finitely generated module a free module?

No again. If \(M\) is a \(R\)-module which is finitely generated by a set \(S=\{x_1,\,x_2,\,\cdots,\,x_n\}\subset M\) then for each element \(x\in M\) we have,

\[x=r_1 x_1+\cdots+r_n x_n\]

where \(r_1,\cdots,r_n\in R\).

However we don't know whether \(S\) is linearly independent. So generally \(M\) is not free.

Am I correct? :)
 
Physics news on Phys.org
That looks correct.

An easy counter-example for (2) is given by the $\Bbb Z$-module $\Bbb Z_n$.

Clearly, we have $\{1\}$ as a generating set, but this is not a basis because:

$n.1 = 0$ but $n \neq 0$.

Something for you to think about:

Suppose $R$ is a principal ideal domain, and that $M$ is a finitely-generated $R$-module.

Let $T = \{m \in M: \exists r \in R^{\ast}\text{ with }r.m = 0\}$.

Is $M/T$ free? (This is a subtler question than might appear at first. Ask yourself: why do we insist $R$ be a PID?).
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top