MHB Free and Finitely Generated Modules

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Modules
Click For Summary
Free modules can have infinite bases, meaning not all free modules are finitely generated; however, a free module with a finite basis is finitely generated. Conversely, not all finitely generated modules are free since linear independence of the generating set is not guaranteed. An example illustrating this is the $\Bbb Z$-module $\Bbb Z_n$, which is finitely generated but not free due to the existence of non-trivial relations. The discussion also raises a complex question about whether the quotient of a finitely generated module by a certain subset is free, particularly in the context of principal ideal domains. Understanding these distinctions is crucial in module theory.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Want to confirm my understanding about Free and Finitely Generated modules. I want to know whether the following ideas are correct. Thank you for all your help. :)

1) Is every free module a finitely generated module?

No. Because a free module may have an infinite basis. So we cannot say it's finitely generated. However if the free module has a finite basis it's finitely generated.

2) Is every finitely generated module a free module?

No again. If \(M\) is a \(R\)-module which is finitely generated by a set \(S=\{x_1,\,x_2,\,\cdots,\,x_n\}\subset M\) then for each element \(x\in M\) we have,

\[x=r_1 x_1+\cdots+r_n x_n\]

where \(r_1,\cdots,r_n\in R\).

However we don't know whether \(S\) is linearly independent. So generally \(M\) is not free.

Am I correct? :)
 
Physics news on Phys.org
That looks correct.

An easy counter-example for (2) is given by the $\Bbb Z$-module $\Bbb Z_n$.

Clearly, we have $\{1\}$ as a generating set, but this is not a basis because:

$n.1 = 0$ but $n \neq 0$.

Something for you to think about:

Suppose $R$ is a principal ideal domain, and that $M$ is a finitely-generated $R$-module.

Let $T = \{m \in M: \exists r \in R^{\ast}\text{ with }r.m = 0\}$.

Is $M/T$ free? (This is a subtler question than might appear at first. Ask yourself: why do we insist $R$ be a PID?).
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
3K
Replies
1
Views
1K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K