MHB Free and Finitely Generated Modules

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Modules
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Want to confirm my understanding about Free and Finitely Generated modules. I want to know whether the following ideas are correct. Thank you for all your help. :)

1) Is every free module a finitely generated module?

No. Because a free module may have an infinite basis. So we cannot say it's finitely generated. However if the free module has a finite basis it's finitely generated.

2) Is every finitely generated module a free module?

No again. If \(M\) is a \(R\)-module which is finitely generated by a set \(S=\{x_1,\,x_2,\,\cdots,\,x_n\}\subset M\) then for each element \(x\in M\) we have,

\[x=r_1 x_1+\cdots+r_n x_n\]

where \(r_1,\cdots,r_n\in R\).

However we don't know whether \(S\) is linearly independent. So generally \(M\) is not free.

Am I correct? :)
 
Physics news on Phys.org
That looks correct.

An easy counter-example for (2) is given by the $\Bbb Z$-module $\Bbb Z_n$.

Clearly, we have $\{1\}$ as a generating set, but this is not a basis because:

$n.1 = 0$ but $n \neq 0$.

Something for you to think about:

Suppose $R$ is a principal ideal domain, and that $M$ is a finitely-generated $R$-module.

Let $T = \{m \in M: \exists r \in R^{\ast}\text{ with }r.m = 0\}$.

Is $M/T$ free? (This is a subtler question than might appear at first. Ask yourself: why do we insist $R$ be a PID?).
 
Thread 'How to define vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
7
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
3K
Replies
1
Views
1K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K