Free particle: expectation of x for all time with Ehrensfest

Click For Summary
SUMMARY

The discussion focuses on calculating the expectation value of position for a free particle using Ehrenfest's theorem. The Hamiltonian is defined as H = p²/(2m), and the wavefunction is given by Ψ(x,0) = N(a² - x²)e^(ikx) for |x| ≤ a. Participants explore the time evolution of the position operator, ultimately deriving that d/dt = (1/m)

. The conversation emphasizes the need to differentiate between the expectation value and the actual position over time.

PREREQUISITES
  • Ehrenfest's theorem in quantum mechanics
  • Understanding of Hamiltonian mechanics
  • Knowledge of wavefunctions and operators in quantum mechanics
  • Familiarity with commutation relations, particularly [x, p] = iħ
NEXT STEPS
  • Study the derivation of Ehrenfest's theorem in detail
  • Learn about the time evolution of quantum states using the Schrödinger equation
  • Explore the implications of commutation relations in quantum mechanics
  • Investigate the relationship between momentum and velocity in classical and quantum contexts
USEFUL FOR

Students of quantum mechanics, physicists working on wave-particle duality, and anyone interested in the mathematical foundations of quantum theory.

renec112
Messages
35
Reaction score
4
Hello physics forums. I'm trying to solve an old exam question. Would love your help.

Homework Statement


A free particle in one dimension is described by:
## H = \frac{p^2}{2m} = \frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}##

at ##t = 0##
The wavefunction is described by:
## \Psi(x,0) = N(a^2-x^2) e^{i k x}## for ##|x| \leq a##
outside ##a##, ## \Psi = 0##. Use Ehrenfest to find the expectation value for all later times ##<x(t))>## of the particles position for all time ## t \geq 0 ##.

Homework Equations


Ehrensfest:
##
\frac{d<Q>}{dt} = \frac{i}{\hbar}<[H,Q]> + <\frac{\partial Q}{\partial t}>
##
Where ##Q## is an operator.

The Attempt at a Solution


We need to find it for all later times, Ehrensfest will show how an operator evolves in time. So set ##Q = x## and use Ehrenfest. Then we know the poisiton for all later time.
##
\frac{d<x>}{dt} = \frac{i}{\hbar}<[H,x]> + <\frac{\partial x}{\partial t}>
##
Since the operator does not change in time we have:
##
\frac{d<x>}{dt} = \frac{i}{\hbar}<[H,x]>
##
Here is where i am stuck. I am trying to do the commutator:
##
\frac{d<x>}{dt} = \frac{i}{\hbar}<(Hx -xH>
##
However, these do commute and hence everything should be zero.

What do you think?
 
Physics news on Phys.org
renec112 said:
However, these do commute ...
Can you show that this is true?
 
  • Like
Likes   Reactions: renec112
kuruman said:
Can you show that this is true?
Actually when you say it like that..
I guess i thought in
## H = \frac{p^2}{2m} = \frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}##
the ##p## is just a constant but off course it's an operator:
##p = i \hbar \frac{\partial}{\partial x}##

I guess the only thing to do is to differentiate a couple of times and then take the inner product :D

##
\frac{d<x>}{dt} = \frac{i}{\hbar}<Hx -xH>
##
##
= \frac{i}{\hbar}<\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2} x -x\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}>
##
##
= < \Psi | \frac{i}{\hbar}<\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2} x -x\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2} | \Psi>
##

Seems legit?

Thank you for helping me.
 
It's legit, but you need to advance it further. Remember that ##[x,p_x] = i \hbar##. There is also a useful identity about commuting operators, that says$$[AB,C]=A[B,C]+[A,C]B.$$ Prove it then use it. What do you think ##A##, ##B## and ##C## should be identified as?
 
  • Like
Likes   Reactions: renec112
kuruman said:
It's legit, but you need to advance it further. Remember that ##[x,p_x] = i \hbar##. There is also a useful identity about commuting operators, that says$$[AB,C]=A[B,C]+[A,C]B.$$ Prove it then use it. What do you think ##A##, ##B## and ##C## should be identified as?
Oh I see. That's very smart.
This is what i did:
##\frac{d<x>}{dt} = \frac{i}{\hbar} <[H,x]>##
insert hamilton
##= \frac{i}{\hbar} <[P^2/2m,x]>##
##= \frac{i}{2 m \hbar } <[PP,x]>##
##= \frac{i}{2 m \hbar } <P[P,x]+[P,x]P>##
##= \frac{i}{2 m \hbar } <-P[x,P]-[x,P]P>##
##= \frac{i}{2 m \hbar } <-P i \hbar-P i \hbar>##
##= \frac{1}{m} <P>##

And i already calculated ##<P>## from another task.
Not sure if it's correct, but it feels like it. Thank you very much for helping me out :) !
 
renec112 said:
Not sure if it's correct, but it feels like it.
Classically, what is v in terms of p?
 
  • Like
Likes   Reactions: renec112
kuruman said:
Classically, what is v in terms of p?
## v = \frac{1}{2} m v^2##
## = \frac{m^2v^2}{2m}##
## = \frac{p^2}{2m}##
## \Rightarrow p = \sqrt{2 v m}##
Like this?
 
renec112 said:
## v = \frac{1}{2} m v^2##
## = \frac{m^2v^2}{2m}##
## = \frac{p^2}{2m}##
## \Rightarrow p = \sqrt{2 v m}##
Like this?
Nope. To begin with, ##\frac{1}{2}mv^2## is kinetic energy ##K##, not speed. What is the classical definition of momentum? Look it up if you forgot.
 
Last edited:
  • Like
Likes   Reactions: renec112
kuruman said:
Nope. To begin with, ##\frac{1}{2}mv^2## is kinetic energy ##K##, not speed. What is the classical definition of momentum? Look it up if you forgot.
Thanks for helping me :)
Its ##p = mv## off course.
Oh i so the m' cancels and i am left with only ##<x>##... Nice trick ! Thank you :)
 
  • #10
renec112 said:
Thanks for helping me :)
Its ##p = mv## off course.
Oh i so the m' cancels and i am left with only ##<x>##... Nice trick ! Thank you :)
Not so fast. So far, you have established that ##\frac{d<x>}{dt}=<v>=\frac{1}{m}<p>##. You have not found ##<x>##.
 
  • Like
Likes   Reactions: renec112
  • #11
kuruman said:
Not so fast. So far, you have established that ##\frac{d<x>}{dt}=<v>=\frac{1}{m}<p>##. You have not found ##<x>##.
Oh right.. I think i misunderstood the question then.
I need to find ##< x(t)> ## for all later times.
But i can't see, how i can find that.. You are saying ##\frac{d<x>}{dt} \neq < x(t)> ##

I am not sure why i should fine ##< x >## I can see it's a part of the equation, but why does it give me ##<x(t)>## for all later times?

I only know how to find ##<x>## when ##t = 0##. Then it's just: ##< \Psi(x,0) | x | \Psi(x,0)>##

Thank you for the comment! appreciate it :)
 

Similar threads

Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
Replies
2
Views
1K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
8
Views
2K
Replies
1
Views
1K