- #1
renec112
- 35
- 4
Hello physics forums. I'm trying to solve an old exam question. Would love your help.
A free particle in one dimension is described by:
## H = \frac{p^2}{2m} = \frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}##
at ##t = 0##
The wavefunction is described by:
## \Psi(x,0) = N(a^2-x^2) e^{i k x}## for ##|x| \leq a##
outside ##a##, ## \Psi = 0##. Use Ehrenfest to find the expectation value for all later times ##<x(t))>## of the particles position for all time ## t \geq 0 ##.
Ehrensfest:
##
\frac{d<Q>}{dt} = \frac{i}{\hbar}<[H,Q]> + <\frac{\partial Q}{\partial t}>
##
Where ##Q## is an operator.
We need to find it for all later times, Ehrensfest will show how an operator evolves in time. So set ##Q = x## and use Ehrenfest. Then we know the poisiton for all later time.
##
\frac{d<x>}{dt} = \frac{i}{\hbar}<[H,x]> + <\frac{\partial x}{\partial t}>
##
Since the operator does not change in time we have:
##
\frac{d<x>}{dt} = \frac{i}{\hbar}<[H,x]>
##
Here is where i am stuck. I am trying to do the commutator:
##
\frac{d<x>}{dt} = \frac{i}{\hbar}<(Hx -xH>
##
However, these do commute and hence everything should be zero.
What do you think?
Homework Statement
A free particle in one dimension is described by:
## H = \frac{p^2}{2m} = \frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}##
at ##t = 0##
The wavefunction is described by:
## \Psi(x,0) = N(a^2-x^2) e^{i k x}## for ##|x| \leq a##
outside ##a##, ## \Psi = 0##. Use Ehrenfest to find the expectation value for all later times ##<x(t))>## of the particles position for all time ## t \geq 0 ##.
Homework Equations
Ehrensfest:
##
\frac{d<Q>}{dt} = \frac{i}{\hbar}<[H,Q]> + <\frac{\partial Q}{\partial t}>
##
Where ##Q## is an operator.
The Attempt at a Solution
We need to find it for all later times, Ehrensfest will show how an operator evolves in time. So set ##Q = x## and use Ehrenfest. Then we know the poisiton for all later time.
##
\frac{d<x>}{dt} = \frac{i}{\hbar}<[H,x]> + <\frac{\partial x}{\partial t}>
##
Since the operator does not change in time we have:
##
\frac{d<x>}{dt} = \frac{i}{\hbar}<[H,x]>
##
Here is where i am stuck. I am trying to do the commutator:
##
\frac{d<x>}{dt} = \frac{i}{\hbar}<(Hx -xH>
##
However, these do commute and hence everything should be zero.
What do you think?