Free vibration in 2DOF spring mass systems

  • Thread starter Thread starter M2H37
  • Start date Start date
  • Tags Tags
    Spring Vibration
AI Thread Summary
To analyze natural frequencies and mode shapes from a displacement vs time graph in a 2DOF spring mass system, it's essential to understand the relationship between displacement data and system dynamics. Specific exercises or examples can clarify how to interpret these graphs effectively. The discussion emphasizes the need for clear, focused questions to facilitate better assistance. Additionally, the relevance of displacement vs time graphs to the topic is questioned, suggesting a need for further context or clarification. Understanding these concepts is crucial for grasping the fundamentals of free vibration analysis.
M2H37
Messages
1
Reaction score
0
Homework Statement
Identify the experimental value of the natural frequencies and mode shapes using the graphs obtained from the experimental data
Relevant Equations
Unsure
I am completely new to this subject and I am trying to find out how I read data off a displacement vs time graph to find the natural frequencies and mode shapes. Lecturer hasn't provided any materials on graphs, just looking for some help and where to go so I can understand it. Thank you
 
Physics news on Phys.org
Hello @M2H37 ,
:welcome: ##\qquad ##!​

You've come to the right place for help !
For good assistance, it's best to ask answerable questions: we need you to point us in the direction of assistance that is useful for you. The more specific, the better.

In this case: find a typical exercise with a "displacement vs time graph" and point out what it is you don't undestand.

You're new to the subject, so I don't expect a highbrow mathematical approach is appropriate at this point.

##\ ##
 
The statement does not mention anything about displacement versus time graphs. Why do yo think that such graphs are relevant to the question? Is the assignment statement as given in the OP or there is more to it?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top