- 42,753
- 10,475
Having obtained the graph of the transient, we can see it oscillates. That means it is underdamped, and alpha in the transient term ##x(t)=Ce^{-\alpha t}## will be complex. This means the transient can be written in the form of eqn 2.11 at the link:EpselonZero said:##-2e^{(-\gamma(7/2))} / -8e^{(-\gamma/2)}##
But what does that mean?
How you get ##Ae^{-\gamma(t+T/2)/2}##
I still not sure why only this part ##Ae^{-\gamma/2}##.
##Ae^{-\gamma/2}## = ?
##x(t)=e^{-\Gamma t/2}(c\cos(\omega t)+d\sin(\omega t))##, where ##\omega^2 = \omega_0^2+\Gamma^2/4##.
For our purposes, it is more convenient to write the amplitude as ##C^2=c^2+d^2##, i.e. ##x(t)=Ce^{-\Gamma t/2}(\sin(\omega t+\phi))##.
The graph starts heading down from the origin, so ##\phi=\pi##.
If we focus on the maxima and minima, the sin() will be taking values +1 and -1, and the magnitude is just ##Ce^{-\Gamma t/2}##.
If the period is ##T=\frac{2\pi}{\omega}## and there is a trough at time t0 then the next peak is at time ##t_0+T/2##.
##x(t_0)=-Ce^{-\Gamma t_0/2}##, ##x(t_0+T/2)=Ce^{-\Gamma (t_0+T/2)/2}=Ce^{-\Gamma t_0/2}e^{-\Gamma T/4}##.
So what is ##|\frac{x(t_0+T/2)}{x(t_0)}|##?
Last edited: