Frequency to wavelength question (thermal Doppler broadening)

  • Thread starter Thread starter dartingeyes
  • Start date Start date
AI Thread Summary
The discussion centers on the relationship between frequency and wavelength, particularly in the context of thermal Doppler broadening. It clarifies that the equation \(\nu = c/\lambda\) does not directly apply to small variations in frequency and wavelength. The derivation shows that the product \(\omega\lambda\) remains constant, leading to the relationship \(\Delta\lambda/\lambda \simeq -\Delta\omega/\omega\). This highlights the importance of understanding variations rather than just the static relationship between frequency and wavelength. The clarification is essential for grasping the nuances of Doppler broadening effects.
dartingeyes
Messages
5
Reaction score
1
Homework Statement
I don't understand how to go from one equation to the other
Relevant Equations
provided in picture
I want to understand how the two equations in the picture are the same. I am confused because \nu=c/\lambda. This would mean that the term on the right side of the equation in the square root, call it x, would then become x^-1. The resulting equation being \Delta\lambda = \lambda x^-1. But somehow this is not the case?
1747768513647.webp
 
Physics news on Phys.org
What you are saying is only true for the relationship between frequency and wavelength themselves - not their small variation.

From ##\omega \propto 1/\lambda## follows that ##\Delta\omega \propto \Delta\lambda /\lambda^2 \propto \Delta\lambda (\omega/\lambda)##.
 
Orodruin said:
What you are saying is only true for the relationship between frequency and wavelength themselves - not their small variation.

From ##\omega \propto 1/\lambda## follows that ##\Delta\omega \propto \Delta\lambda /\lambda^2 \propto \Delta\lambda (\omega/\lambda)##.
Thank you. This tracks for me.
 
A somewhat cleaner derivation:

The product ##\omega\lambda## is constant so ##0=\Delta(\omega\lambda) \simeq \omega \Delta\lambda + \lambda\Delta\omega##. This directly leads to ##\Delta\lambda/\lambda \simeq - \Delta\omega/\omega##.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top