pvk21
Let's see.According to friedmann,universe looks same whichever direction we look.but what does it imply exactly.does it like there are equal number of galaxies in all direction?
The discussion centers on Friedmann's assumptions regarding the isotropy and homogeneity of the universe, asserting that the observable universe appears uniform in all directions, with galaxy distribution consistent across the cosmos. The cosmic microwave background (CMB) serves as key evidence, showing uniformity to within 0.001%. The conversation also touches on the universe's curvature, with recent measurements indicating it is nearly flat, with a maximum spatial curvature of |Omega_K| < 0.005, suggesting a radius of curvature greater than 200 billion light-years.
PREREQUISITESAstronomers, cosmologists, and physics students interested in the large-scale structure of the universe and the implications of Friedmann's assumptions on cosmological theories.
Ah OK, I like it because it shows a sphere when the usual maps don't obviously do so, but I guess you're right, it can suggest an outside observer... OK, so here is the more usual projectionChronos said:That image portrays a finite universe as viewed by an external observer - very misleading.
This is generally true of spacetime curvature (for FLRW spaces), but how is this relevant here?cosmological spacetime aren't asymptotically flat
wabbit said:Not sure what that "25% of being a sphere" means? The universe is known not to be spatially curved more than a sphere of about 100 bn ly at least, and it could be spatially flat - it is flat within measurement uncertainty, the flat FLRW model is commonly used.
Oh that's "within some small % of being flat", not of being a sphere.julcab12 said:Ops. Sorry typo 0.25%. -- (New constraint from Planck 2015)
julcab12 said:Ops. Sorry typo 0.25%. -- (New constraint from Planck 2015)
wabbit said:Oh that's within 0.25% or so of being flat, not of being a sphere.
wabbit said:Oh that's "within some small % of being flat", not of being a sphere.
Well you can read it either way. It says the equivalent energy density produced by spatial curvature is ## 0\pm0.005 ## as a fraction of total energy density. This is compatible with either flat space or a sphere (or hyperbolic space) of radius greater than some 200 bn ly or so. We just don't know more.julcab12 said:..0.25% Of being curved and largely flat. I know it is a very small value and it can account to a glitch -- negligible.
Right.pvk21 said:So our universe is almost flat of we ignore that small curve
Hmmm... Yes in a sense* I guess, but what exactly do you mean by that ?pvk21 said:So flat universe imply that after a big bang universe expanded unformly in straight line.is that right?
Then take solace in the possibility of a very large sphere* : ) that's what I dopvk21 said:Sorry but I can't imagine universe as flat.
wabbit said:Well you can read it either way. It says the equivalent energy density produced by spatial curvature is ## 0\pm0.005 ## as a fraction of total energy density. This is compatible with either flat space or a sphere (or hyperbolic space) of radius greater than some 100 bn ly or so.
Lol.. I'm not usually that picky nor i have any authority on the subject (just a laymen here) -- but w/out curvature it is flat not almost..pvk21 said:So our universe is almost flat of we ignore that small curve
No, that's not what the model says. First, FLRW does not model what happened "at" the big bang, only at any time after that. And then, from any point "at rest" wrt the expansion, (we are in that case to a reasonable approximation), you see every other point (that is also at rest, or far enough that it doesn't matter) receding away in a straight line (the farther away they are, the faster they recede). There is no preferred direction.pvk21 said:Well its just my imagination but look when big bang happened all material that was at that point expanded all in straight line that mean it only in forward direction not in all directions
I sympathize. I can't imagine it as flat and infinite in extent. And I don't enjoy trying to imagine it as zero curvature and finite ( "PacMan" style flatness).pvk21 said:Sorry but I can't imagine universe as flat.
Wabbit points to where it says "Spatial curvature is found to be |Omega_K| < 0.005." in the abstract. Click on the link. You get the abstract of the relevant Planck mission report and in the middle of the paragraph it says the MOST that |Omega_K| can be, with 95% certainty, is 0.005.wabbit said:... greater than 200 bn ly, from the 2015 release http://arxiv.org/abs/1502.01589
wabbit said:Well you can read it either way. It says the equivalent energy density produced by spatial curvature is ## 0\pm0.005 ## as a fraction of total energy density. This is compatible with either flat space or a sphere (or hyperbolic space) of radius greater than some 200 bn ly or so. We just don't know more.
wabbit said:But as far as I know (not much, I just started reading about inflation), this theory has no preference for 0 curvature over a very small curvature. So we are back where we started, with no compelling reason to believe the universe is exactly flat, although we know it is nearly flat.