Hi(adsbygoogle = window.adsbygoogle || []).push({});

The following is a standard application of Noether's Theorem given in most books on QFT, in a preliminary section on classical field theory. Reproduced below are steps from the QFT book by Palash and Pal, which I am referring to, having read the same from other books. I have some trouble with a step which I have highlighted in bold. I would be grateful if someone could clarify my doubts. Thanks in advance!

While I understand how the last integral has been written, by employing Gauss's Law, I don't understand how Consider infinitesimal transformations of the coordinate system

[tex]x^{\mu} \rightarrow x'^{\mu} = x^{\mu} + \delta x^{\mu}[/tex]

under which the fields transform as

[tex]\Phi^{A}(x) \rightarrow \Phi'^{A}(x) = \Phi^{A}(x) + \delta \Phi^{A}(x)[/tex]

The change in the action resulting from these transformations is given by

[tex]\delta \mathcal{A} = \int_{\Omega'} d^{4}x' \mathcal{L}(\Phi'^{A}(x'),\partial_{\mu}'\Phi'^{A}(x')) - \int_{\Omega}d^{4}x \mathcal{L}(\Phi^{A}(x),\partial_{\mu}(\Phi^{A}(x)))[/tex]

where [itex]\Omega'[/itex] is the transform of [itex]\Omega[/itex] under the coordinate change. This can be rewritten as

[tex]\delta \mathcal{A} = \int_{\Omega}d^{4}x \left[\mathcal{L}(\Phi'^{A}(x),\partial_{\mu}'\Phi'^{A}(x)) - \mathcal{L}(\Phi^{A}(x),\partial_{\mu}(\Phi^{A}(x))\right] + \int_{\Omega'-\Omega}d^{4}x \mathcal{L}(\Phi'^{A}(x),\partial_{\mu}'\Phi'^{A}(x))[/tex]

The last term is an integral over the infinitesimal volume [itex]\Omega'-\Omega[/itex], so we can replace it by an integral over the boundary [itex]\partial\Omega[/itex],

[tex]\int_{\Omega'-\Omega}d^{4}x \mathcal{L}(\Phi'^{A},\partial_{\mu}'\Phi'^{A}) = \int_{\partial\Omega}dS_{\lambda} \delta x^{\lambda}\mathcal{L}(\Phi^{A},\partial_{\mu}\Phi^{A}) = \int_{\Omega}d^{4}x \partial_{\lambda}(\delta x^{\lambda}\mathcal{L}(\Phi^{A},\partial_{\mu}\Phi^{A}))[/tex]

[tex]\int_{\Omega'-\Omega}d^{4}x \mathcal{L}(\Phi'^{A},\partial_{\mu}'\Phi'^{A}) = \int_{\partial\Omega}dS_{\lambda} \delta x^{\lambda}\mathcal{L}(\Phi^{A},\partial_{\mu}\Phi^{A})[/tex]

Can someone please explain this step? Where did the [itex]\delta x^{\lambda}[/itex] come from?

Thanks.

EDIT - I think I got it: [itex]d^{4}x = dS_{\lambda}x^{\lambda}[/itex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# From Noether's Theorem to Stress-Energy Tensor

Loading...

Similar Threads for Noether's Theorem Stress |
---|

A Does the Frauchiger-Renner Theorem prove only MWI is correct |

A Helium atom, variation method and virial theorem |

A Time independence of a Noether charge in QFT? |

I About Noether Theorem |

I Lorentz transformation and its Noether current |

**Physics Forums | Science Articles, Homework Help, Discussion**